Utilizing a facile top-down synthetic procedure, here we report the finding of a chlorine-passivated Al37 superatom cluster. It is demonstrated that the presence of electrophilic groups, severing as protecting ligands, alters the valence electron count of the metallic core and stabilize the as-prepared aluminum clusters especially when even-numbered chlorine atoms are located at equilibrium positions. Following the discussion regarding their reasonable stabilities, we illustrate the feasible reaction pathways in forming such chlorine-passivated Al37 superatom clusters which bear delocalized superatomic orbitals with five valence 3P5 electrons shifting to the chlorine ligands indicative of a closed electron shell 2F14 of the metal core. The successful synthesis of such chlorine-protected aluminum clusters evidences the compatibility of general theory of cluster chemistry in both gas phase and wet chemistry. Such simple-ligand-protected aluminum clusters exhibit reverse-saturated-absorption (RSA) nonlinear optical property pertaining to electronic transitions within the discrete energy states of cluster materials.
the Key Research Program of Frontier Sciences(QYZDB-SSW-SLH024)
the National Natural Science Foundation of China(21722308)
the National Thousand Youth Talents Program.
This work was supported by the Key Research Program of Frontier Sciences (QYZDB-SSW-SLH024), the National Natural Science Foundation of China (21722308) and the National Thousand Youth Talents Program.
The authors declare that they have no conflict of interest.
The supporting information is available online at
[1] Luo Z, Castleman AW. Acc Chem Res, 2014, 47: 2931-2940 CrossRef PubMed Google Scholar
[2] Reber AC, Khanna SN. Acc Chem Res, 2017, 50: 255-263 CrossRef PubMed Google Scholar
[3] H?kkinen H. Chem Soc Rev, 2008, 37: 1847-1859 CrossRef PubMed Google Scholar
[4] Clemenger K. Phys Rev B, 1985, 32: 1359-1362 CrossRef ADS Google Scholar
[5] Fedrigo S, Harbich W, Buttet J. Phys Rev B, 1993, 47: 10706-10715 CrossRef ADS Google Scholar
[6] de Heer WA, Selby K, Kresin V, Masui J, Vollmer M, Chatelain A, Knight WD. Phys Rev Lett, 1987, 59: 1805-1808 CrossRef PubMed ADS Google Scholar
[7] Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML. Phys Rev Lett, 1984, 52: 2141-2143 CrossRef ADS Google Scholar
[8] de Heer WA. Rev Mod Phys, 1993, 65: 611-676 CrossRef ADS Google Scholar
[9] Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. Coord Chem Rev, 2006, 250: 2811-2866 CrossRef Google Scholar
[10] Li WL, Romanescu C, Jian T, Wang LS. J Am Chem Soc, 2012, 134: 13228-13231 CrossRef PubMed Google Scholar
[11] Luo Z, Castleman Jr. AW, Khanna SN. Chem Rev, 2016, 116: 14456-14492 CrossRef PubMed Google Scholar
[12] Leuchtner RE, Harms AC, Castleman Jr. AW. J Chem Phys, 1989, 91: 2753-2754 CrossRef ADS Google Scholar
[13] Cheng L, Yuan Y, Zhang X, Yang J. Angew Chem Int Ed, 2013, 52: 9035-9039 CrossRef PubMed Google Scholar
[14] Qian H, Zhu Y, Jin R. J Am Chem Soc, 2010, 132: 4583-4585 CrossRef PubMed Google Scholar
[15] Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Science, 2007, 318: 430-433 CrossRef PubMed ADS Google Scholar
[16] Whetten RL, Price RC. Science, 2007, 318: 407-408 CrossRef PubMed Google Scholar
[17] Zeng C, Chen Y, Kirschbaum K, Lambright KJ, Jin R. Science, 2016, 354: 1580-1584 CrossRef PubMed ADS Google Scholar
[18] Henke P, Trapp N, Anson CE, Schn?ckel H. Angew Chem Int Ed, 2010, 49: 3146-3150 CrossRef PubMed Google Scholar
[19] Klinkhammer KW, Uhl W, Wagner J, Hiller W. Angew Chem Int Ed Engl, 1991, 30: 179-180 CrossRef Google Scholar
[20] Schno?ckel H. Chem Rev, 2010, 110: 4125-4163 CrossRef PubMed Google Scholar
[21] Ecker A, Weckert E, Schn?ckel H. Nature, 1997, 387: 379-381 CrossRef ADS Google Scholar
[22] Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Gr?nbeck H, H?kkinen H. Proc Natl Acad Sci USA, 2008, 105: 9157-9162 CrossRef PubMed ADS Google Scholar
[23] Luo Z, Reber AC, Jia M, Blades WH, Khanna SN, Castleman AW. Chem Sci, 2016, 7: 3067-3074 CrossRef Google Scholar
[24] Yan Z, Bao R, Huang Y, Chrisey DB. J Phys Chem C, 2010, 114: 11370-11374 CrossRef Google Scholar
[25] Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W. Adv Funct Mater, 2012, 22: 1333-1353 CrossRef Google Scholar
[26] Scaramuzza S, Zerbetto M, Amendola V. J Phys Chem C, 2016, 120: 9453-9463 CrossRef Google Scholar
[27] Sheik-Bahae M, Said AA, van Stryland EW. Opt Lett, 1989, 14: 955-957 CrossRef ADS Google Scholar
[28] Wu H, Yuan C, Luo Z. J Mater Chem C, 2017, 5: 7561-7566 CrossRef Google Scholar
[29] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Wallingford: Gaussian, Inc., 2009, 19: 227–238. Google Scholar
[30] Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865-3868 CrossRef PubMed ADS Google Scholar
[31] Adamo C, Barone V. J Chem Phys, 1999, 110: 6158-6170 CrossRef ADS Google Scholar
[32] Gonzalez C, Schlegel HB. J Chem Phys, 1989, 90: 2154-2161 CrossRef ADS Google Scholar
[33] Glendening ED, Landis CR, Weinhold F. WIREs Comput Mol Sci, 2012, 2: 1-42 CrossRef Google Scholar
[34] Podagatlapalli GK, Hamad S, Sreedhar S, Tewari SP, Venugopal Rao S. Chem Phys Lett, 2012, 530: 93-97 CrossRef ADS Google Scholar
[35]
Luo YR.
[36] Kuladeep R, Jyothi L, Prakash P, Mayank Shekhar S, Durga Prasad M, Narayana Rao D. J Appl Phys, 2013, 114: 243101 CrossRef ADS Google Scholar
[37] Jin R, Liu C, Zhao S, Das A, Xing H, Gayathri C, Xing Y, Rosi NL, Gil RR, Jin R. ACS Nano, 2015, 9: 8530-8536 CrossRef Google Scholar
[38] Aguado A, López JM. J Phys Chem Lett, 2013, 4: 2397-2403 CrossRef Google Scholar
[39] Abreu MB, Powell C, Reber AC, Khanna SN. J Am Chem Soc, 2012, 134: 20507-20512 CrossRef PubMed Google Scholar
[40] Castro-Lopez M, Brinks D, Sapienza R, van Hulst NF. Nano Lett, 2011, 11: 4674-4678 CrossRef PubMed ADS Google Scholar
Figure 1
UV/Vis absorption spectra of the as-prepared aluminum clusters (a), with a comparison to that of the commercial Al powders dispersed in CH2Cl2 (b). The inset shows a photograph of the CH2Cl2 solvent, Al powder and the cluster sample (color online).
Scheme 1
(a) A sketch showing the homemade setup for laser ablation of aluminium (LAL) rod in liquid. (b) The customized experimental setup for
Figure 2
Typical high-resolution electrospray ionization mass spectra (ESI-MS) of the aluminum clusters, in negative mode, with methanol as the mobile phase (color online).
Figure 3
Millikan charge distribution, electrostatic potential, and frontier molecular orbitals of the neutral clusters Al37 (a) and Al37Cl6 (b) at the pbepbe/tzvp level of theory (color online).
Figure 4
(A) Reaction coordinate for the formation of Al37Cl clusters at the pbepbe/tzvp level of theory. (B) NBO donor-acceptor interactions in Al37-Cl-CH2Cl complex of (a) initial adsorbed state I (b) transition state (TS) (c) desorption product (P). Pink, green, dark grey and light grey atoms refer to Al, Cl, C and H, respectively (color online).
Figure 5
Normalized transmittance of aluminium chloride clusters (
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1