High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport

logo

SCIENCE CHINA Chemistry, Volume 61, Issue 12: 1609-1618(2018) https://doi.org/10.1007/s11426-018-9320-3

High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport

More info
  • ReceivedJun 21, 2018
  • AcceptedJun 26, 2018
  • PublishedAug 22, 2018

Abstract

The polymer/small-molecule electron donor and nonfullerene organic electron acceptor are of structural similarity with both donor and acceptor molecules consisting of polycyclic fused-ring backbone and being decorated with alkyl-chains. In this study, we report that the introduction of binary fullerenes (C60-/C70-PCBM and C60-/C70-ICBA) into a nonfullerene binary system PBDB-T:ITIC reduces the polymer-nonfullerene acceptor intermixing, obtaining higher crystallinity with (100) crystal coherence length from 28 to 29–33?nm for the ITIC, and from 14 to 20–24?nm for the PBDB-T, and improved electron and hole mobilities both. Unprecedentedly, such a protocol reduces the ITIC optical band gap from 1.59 to 1.55?eV. As consequences, higher short-circuit current-density (17.8–18.4 vs. 15.8?mA/cm2), open-circuit voltage (0.92 vs. 0.90?V) and fill-factor (0.72–0.73 vs. 0.68) are simultaneously obtained, which ultimately afford higher efficient quaternary polymer solar cells with power conversion efficiencies (PCEs) up to 12.0%–12.8% comparing to the host binary device with 9.9% efficiency. For the polymer, ITIC, and ICBA/PCBM ternary blends, 11% PCEs were recorded. The use of PCBM leads to larger red-shifting in thin film absorption and external quantum efficiency (EQE) response. Such effect is more pronounced when ICBA:PCBM mixture is used. These results indicate the size and shape of C60 and C70 as well as the substituent position of the second indene unit on C60-/C70-ICBA affect not only the blend morphology but also the electronic coupling in BHJ mixtures: the quaternary device performance increased in sequences of C70-PCBM:C70-ICBA?C70-PCBM:C60-ICBA?C60-PCBM:C70-ICBA?C60-PCBM:C60-ICBA. The resonant soft X-ray scattering (RSoXS) data indicated the most refined phase separation in the C60-PCBM:C60-ICBA based blend, corresponding to its best device function among the quaternary devices. These results indicate that the using of binary fullerenes as the acceptor additives allows for tuning nonfullerene blended film’s optical properties and film-morphologies, shedding light on the designing high-performance multi-acceptor polymer solar cells.


Funded by

the National Natural Science Foundation of China(91433202,21773262,21327805,21521062,91227112)

Chinese Academy of Sciences(XDB12010200)

Ministry of Science and Technology of China(2013CB933503)

and the US Office of Naval Research(N00014-15-1-2244)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (91433202, 21773262, 21327805, 21521062, 91227112), Chinese Academy of Sciences (XDB12010200), Ministry of Science and Technology of China (2013CB933503), and the US Office of Naval Research (N00014-15-1-2244). Parts of this research were conducted at beamline 7.3.3 and 11.0.1.2, and Molecular Foundry at Lawrence Berkeley National Laboratory, which was sustained by the Department of Energy, Office of Science, and Office of Basic Energy Sciences.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://Chemscichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336-1343 CrossRef PubMed Google Scholar

[2] Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139: 4929-4934 CrossRef PubMed Google Scholar

[3] Luo Z, Zhao Y, Zhang ZG, Li G, Wu K, Xie D, Gao W, Li Y, Yang C. ACS Appl Mater Interfaces, 2017, 9: 34146-34152 CrossRef Google Scholar

[4] Ma Y, Zhang M, Tang Y, Ma W, Zheng Q. Chem Mater, 2017, 29: 9775-9785 CrossRef Google Scholar

[5] Li Y, Zhong L, Gautam B, Bin HJ, Lin JD, Wu FP, Zhang Z, Jiang ZQ, Zhang ZG, Gundogdu K, Li Y, Liao LS. Energy Environ Sci, 2017, 10: 1610-1620 CrossRef Google Scholar

[6] Li S, Zhan L, Liu F, Ren J, Shi M, Li CZ, Russell TP, Chen H. Adv Mater, 2018, 30: 1705208 CrossRef PubMed Google Scholar

[7] Xue L, Yang Y, Xu J, Zhang C, Bin H, Zhang ZG, Qiu B, Li X, Sun C, Gao L, Yao J, Chen X, Yang Y, Xiao M, Li Y. Adv Mater, 2017, 29: 1703344 CrossRef PubMed Google Scholar

[8] Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang XF, Yin Q, Liang Z, Huang F, Cao Y. Adv Energy Mater, 2017, 7: 1700944 CrossRef Google Scholar

[9] Firdaus Y, Maffei LP, Cruciani F, Müller MA, Liu S, Lopatin S, Wehbe N, Ndjawa GON, Amassian A, Laquai F, Beaujuge PM. Adv Energy Mater, 2017, 7: 1700834 CrossRef Google Scholar

[10] Bao X, Zhang Y, Wang J, Zhu D, Yang C, Li Y, Yang C, Xu J, Yang R. Chem Mater, 2017, 29: 6766-6771 CrossRef Google Scholar

[11] Xia D, Wu Y, Wang Q, Zhang A, Li C, Lin Y, Colberts FJM, van Franeker JJ, Janssen RAJ, Zhan X, Hu W, Tang Z, Ma W, Li W. Macromolecules, 2016, 49: 6445-6454 CrossRef ADS Google Scholar

[12] Chen S, Liu Y, Zhang L, Chow PCY, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc, 2017, 139: 6298-6301 CrossRef PubMed Google Scholar

[13] Yang F, Wang X, Feng G, Ma J, Li C, Li J, Ma W, Li W. Sci China Chem, 2018, 61: 824-829 CrossRef Google Scholar

[14] Wang T, Feng L, Yuan J, Jiang L, Deng W, Zhang ZG, Li Y, Zou Y. Sci China Chem, 2018, 61: 206-214 CrossRef Google Scholar

[15] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[16] Xu SJ, Zhou Z, Liu W, Zhang Z, Liu F, Yan H, Zhu X. Adv Mater, 2017, 29: 1704510 CrossRef PubMed Google Scholar

[17] Li S, Ye L, Zhao W, Liu X, Zhu J, Ade H, Hou J. Adv Mater, 2017, 29: 1704051 CrossRef PubMed Google Scholar

[18] Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144 CrossRef PubMed Google Scholar

[19] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423-9429 CrossRef PubMed Google Scholar

[20] Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30: 1703973 CrossRef PubMed Google Scholar

[21] Li W, Ye L, Li S, Yao H, Ade H, Hou J. Adv Mater, 2018, 30: 1707170 CrossRef PubMed Google Scholar

[22] Fan Q, Zhu Q, Xu Z, Su W, Chen J, Wu J, Guo X, Ma W, Zhang M, Li Y. Nano Energy, 2018, https://doi.org/10.1016/Jnanoen.2018.1004. 1002. Google Scholar

[23] Yao H, Ye L, Hou J, Jang B, Han G, Cui Y, Su GM, Wang C, Gao B, Yu R, Zhang H, Yi Y, Woo HY, Ade H, Hou J. Adv Mater, 2017, 29: 1700254 CrossRef PubMed Google Scholar

[24] Luo Z, Bin H, Liu T, Zhang ZG, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30: 1706124 CrossRef PubMed Google Scholar

[25] Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang ZG, Li Y. Nat Commun, 2018, 9: 743 CrossRef PubMed ADS Google Scholar

[26] Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell TP, Ding L. Sci Bull, 2017, 62: 1494-1496 CrossRef Google Scholar

[27] Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150 CrossRef PubMed Google Scholar

[28] Luo Z, Li G, Gao W, Wu K, Zhang ZG, Qiu B, Bin H, Xue L, Liu F, Li Y, Yang C. J Mater Chem A, 2018, 6: 6874-6881 CrossRef Google Scholar

[29] Fei Z, Eisner FD, Jiao X, Azzouzi M, R?hr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209 CrossRef PubMed Google Scholar

[30] Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353 CrossRef PubMed Google Scholar

[31] Xu X, Li Z, Bi Z, Yu T, Ma W, Feng K, Li Y, Peng Q. Adv Mater, 2018, 30: 1800737 CrossRef PubMed Google Scholar

[32] Li S, Ye L, Zhao W, Zhang S, Ade H, Hou J. Adv Energy Mater, 2017, 7: 1700183 CrossRef Google Scholar

[33] Zhang Z, Feng L, Xu S, Yuan J, Zhang ZG, Peng H, Li Y, Zou Y. J Mater Chem A, 2017, 5: 11286-11293 CrossRef Google Scholar

[34] Zhang X, Yao J, Zhan C. Sci China Chem, 2016, 59: 209-217 CrossRef Google Scholar

[35] Liu W, Li W, Yao J, Zhan C. Chin Chem Lett, 2018, 29: 381-384 CrossRef Google Scholar

[36] Feng S, Zhang C, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z. Adv Mater, 2017, 29: 1703527 CrossRef PubMed Google Scholar

[37] Yao Z, Liao X, Gao K, Lin F, Xu X, Shi X, Zuo L, Liu F, Chen Y, Jen AKY. J Am Chem Soc, 2018, 140: 2054-2057 CrossRef PubMed Google Scholar

[38] Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531-537 CrossRef Google Scholar

[39] Ameri T, Heumüller T, Min J, Li N, Matt G, Scherf U, Brabec CJ. Energy Environ Sci, 2013, 6: 1796 CrossRef Google Scholar

[40] Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716-722 CrossRef ADS Google Scholar

[41] Street RA, Davies D, Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2013, 135: 986-989 CrossRef PubMed Google Scholar

[42] Mollinger SA, Vandewal K, Salleo A. Adv Energy Mater, 2015, 5: 1501335 CrossRef Google Scholar

[43] Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176-8183 CrossRef PubMed Google Scholar

[44] An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B. Energy Environ Sci, 2016, 9: 281-322 CrossRef Google Scholar

[45] Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424-2434 CrossRef PubMed Google Scholar

[46] Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387-2395 CrossRef PubMed Google Scholar

[47] Zhang Y, Deng D, Lu K, Zhang J, Xia B, Zhao Y, Fang J, Wei Z. Adv Mater, 2015, 27: 1071-1076 CrossRef PubMed Google Scholar

[48] Xu X, Bi Z, Ma W, Wang Z, Choy WCH, Wu W, Zhang G, Li Y, Peng Q. Adv Mater, 2017, 29: 1704271 CrossRef PubMed Google Scholar

[49] Zhong L, Gao L, Bin H, Hu Q, Zhang ZG, Liu F, Russell TP, Zhang Z, Li Y. Adv Energy Mater, 2017, 7: 1602215 CrossRef Google Scholar

[50] Lee TH, Uddin MA, Zhong C, Ko SJ, Walker B, Kim T, Yoon YJ, Park SY, Heeger AJ, Woo HY, Kim JY. Adv Energy Mater, 2016, 6: 1600637 CrossRef Google Scholar

[51] Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258-265 CrossRef Google Scholar

[52] Yang Y, Chen W, Dou L, Chang WH, Duan HS, Bob B, Li G, Yang Y. Nat Photon, 2015, 9: 190-198 CrossRef ADS Google Scholar

[53] Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I. Acc Chem Res, 2015, 48: 2803-2812 CrossRef PubMed Google Scholar

[54] Liu T, Guo Y, Yi Y, Huo L, Xue X, Sun X, Fu H, Xiong W, Meng D, Wang Z, Liu F, Russell TP, Sun Y. Adv Mater, 2016, 28: 10008-10015 CrossRef PubMed Google Scholar

[55] Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, R?hr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363-369 CrossRef PubMed ADS Google Scholar

[56] Yu R, Zhang S, Yao H, Guo B, Li S, Zhang H, Zhang M, Hou J. Adv Mater, 2017, 29: 1700437 CrossRef PubMed Google Scholar

[57] Yu J, Xi Y, Chueh CC, Xu JQ, Zhong H, Lin F, Jo SB, Pozzo LD, Tang W, Jen AKY. Nano Energy, 2017, 39: 454-460 CrossRef Google Scholar

[58] Cheng P, Wang R, Zhu J, Huang W, Chang SY, Meng L, Sun P, Cheng HW, Qin M, Zhu C, Zhan X, Yang Y. Adv Mater, 2018, 30: 1705243 CrossRef PubMed Google Scholar

[59] Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005 CrossRef PubMed Google Scholar

[60] Wu W, Zhang G, Xu X, Wang S, Li Y, Peng Q. Adv Funct Mater, 2018, 28: 1707493 CrossRef Google Scholar

[61] Cheng P, Wang J, Zhang Q, Huang W, Zhu J, Wang R, Chang SY, Sun P, Meng L, Zhao H, Cheng HW, Huang T, Liu Y, Wang C, Zhu C, You W, Zhan X, Yang Y. Adv Mater, 2018, 30: 1801501 CrossRef PubMed Google Scholar

[62] Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I. Energy Environ Sci, 2016, 9: 3783-3793 CrossRef PubMed Google Scholar

[63] Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater, 2017, 7: 1602269 CrossRef Google Scholar

[64] Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356-3359 CrossRef PubMed Google Scholar

[65] Liu W, Yao J, Zhan C. Chin J Chem, 2017, 35: 1813-1823 CrossRef Google Scholar

[66] Lin J-D, Zhong L, Wu F-P, Li Y, Yuan Y, Bin H, Zhang Z, Liu F, Fan J, Zhang Z-G, Liao L-S, Jiang Z-Q, Li Y. Sci China Chem, 2018, https://doi.org/10.1007/s11426-11018-19275-11426. Google Scholar

[67] Feng S, Ma D, Wu L, Liu Y, Zhang C E, Xu X, Chen X, Yan S, Bo Z.Sci China Chem, 2018, https://doi.org/10.1007/s11426-11018-19252-11429. Google Scholar

[68] Angmo D, Bjerring M, Nielsen NC, Thompson BC, Krebs FC. J Mater Chem C, 2015, 3: 5541-5548 CrossRef Google Scholar

[69] Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2011, 133: 14534-14537 CrossRef PubMed Google Scholar

[70] Huang TY, Patra D, Hsiao YS, Chang SH, Wu CG, Ho KC, Chu CW. J Mater Chem A, 2015, 3: 10512-10518 CrossRef Google Scholar

[71] Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z’, Hou J. Macromolecules, 2012, 45: 9611-9617 CrossRef ADS Google Scholar

[72] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[73] Cha H, Wu J, Wadsworth A, Nagitta J, Limbu S, Pont S, Li Z, Searle J, Wyatt MF, Baran D, Kim JS, McCulloch I, Durrant JR. Adv Mater, 2017, 29: 1701156 CrossRef PubMed Google Scholar

[74] Lu H, Zhang J, Chen J, Liu Q, Gong X, Feng S, Xu X, Ma W, Bo Z. Adv Mater, 2016, 28: 9559-9566 CrossRef PubMed Google Scholar

[75] Li W, Yan D, Liu W, Chen J, Xu W, Zhan C, Yao J. Sol RRL, 2017, 1: 1700014 CrossRef Google Scholar

[76] Zhao W, Li S, Zhang S, Liu X, Hou J. Adv Mater, 2016, 29: 1604059 CrossRef PubMed Google Scholar

[77] Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2017, 29: 1603154 CrossRef PubMed Google Scholar

[78] An M, Xie F, Geng X, Zhang J, Jiang J, Lei Z, He D, Xiao Z, Ding L. Adv Energy Mater, 2017, 7: 1602509 CrossRef Google Scholar

[79] Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562-1564 CrossRef Google Scholar

[80] Huang G, Zhang J, Uranbileg N, Chen W, Jiang H, Tan H, Zhu W, Yang R. Adv Energy Mater, 2018, 8: 1702489 CrossRef Google Scholar

[81] Chen Y, Qin Y, Wu Y, Li C, Yao H, Liang N, Wang X, Li W, Ma W, Hou J. Adv Energy Mater, 2017, 7: 1700328 CrossRef Google Scholar

[82] Ameri T, Khoram P, Min J, Brabec CJ. Adv Mater, 2013, 25: 4245-4266 CrossRef PubMed Google Scholar

[83] Li W, Zhang X, Zhang X, Yao J, Zhan C. ACS Appl Mater Interfaces, 2017, 9: 1446-1452 CrossRef Google Scholar

[84] Li CZ, Chueh CC, Yip HL, O’Malley KM, Chen WC, Jen AKY. J Mater Chem, 2012, 22: 8574-8578 CrossRef Google Scholar

[85] Han G, Guo Y, Song X, Wang Y, Yi Y. J Mater Chem C, 2017, 5: 4852-4857 CrossRef Google Scholar

[86] Tang A, Zhan C, Yao J. Adv Energy Mater, 2015, 5: 1500059 CrossRef Google Scholar

[87] Chen Y, Zhang X, Zhan C, Yao J. ACS Appl Mater Interfaces, 2015, 7: 6462-6471 CrossRef PubMed Google Scholar

[88] Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J. Adv Funct Mater, 2004, 14: 38-44 CrossRef Google Scholar

  • Figure 1

    (a, b) Molecular structures of the donor and acceptor materials used for the fabrications of the Q-BHJs. (c) Absorption spectra of the pure donor and acceptor films. (d) Diagrams of the energy levels of the donor and acceptors (color online).

  • Figure 2

    (a) The J-V curves and (b) EQE spectra of the optimal quaternary solar cells and (c) their films’ UV-vis absorption spectra as well (color online).

  • Figure 4

    The RSoXS profiles of the quaternary (a, b) and ternary (c, d) solar cell blends (color online).

  • Figure 5

    TEM images of (a) the host binary, (b, c) the ternary, and (d–g) the four quaternary solar cell blends.

  • Figure 6

    Plots of the (a) Jsc, (b) Voc, and (c) normalized FF of the four quaternary devices with several different light intensities (color online).

  • Table 1   Table 1 The photovoltaic data with different electron-acceptor materials. The electron-donor material is PBDB-T for all PSCs. All data were obtained under illumination of AM 1.5G (100?mW/cm2) light source

    Active layera)

    Voc (V)b)

    Jsc (mA/cm2)b)

    Jsc (mA/cm2)c)

    FFb)

    PCEave (%)b)

    EgEQE (eV)d)

    Eloss (eV)e)

    Q-BHJ1

    0.915±0.006

    17.83±0.27

    17.15

    0.719±0.010

    11.73±0.27 (12.06)

    1.554

    0.639

    Q-BHJ2

    0.916±0.005

    17.85±0.25

    16.92

    0.720±0.011

    11.77±0.31 (12.12)

    1.558

    0.642

    Q-BHJ3

    0.922±0.006

    18.23±0.27

    17.36

    0.721±0.009

    12.12±0.30 (12.47)

    1.550

    0.628

    Q-BHJ4

    0.925±0.007

    18.39±0.26

    17.55

    0.730±0.009

    12.42±0.28 (12.76)

    1.548

    0.623

    T-BHJ1

    0.930±0.005

    16.67±0.25

    15.88

    0.695±0.011

    10.77±0.28 (11.09)

    1.580

    0.650

    T-BHJ2

    0.930±0.007

    16.59±0.26

    15.76

    0.695±0.018

    10.67±0.25 (10.97)

    1.580

    0.650

    T-BHJ3

    0.885±0.005

    17.55±0.27

    16.84

    0.702±0.011

    10.90±0.29 (11.23)

    1.562

    0.677

    T-BHJ4

    0.890±0.005

    17.67±0.26

    16.78

    0.703±0.011

    11.05±0.28 (11.37)

    1.562

    0.672

    PBDB-T:ITIC

    0.897±0.007

    15.81±0.23

    15.49

    0.681±0.010

    9.66±0.24 (9.94)

    1.590

    0.693

    Q-BHJ1: PBDB-T:ITIC:C70-PCBM:C70-ICBA; Q-BHJ2: PBDB-T:ITIC:C70-PCBM:C60-ICBA; Q-BHJ3: PBDB-T:ITIC:C60-PCBM:C70-ICBA; Q-BHJ4: PBDB-T:ITIC:C60-PCBM:C60-ICBA. T-BHJ1: PBDB-T:ITIC:C70-ICBA; T-BHJ2: PBDB-T:ITIC:C60-ICBA; T-BHJ3: PBDB-T:ITIC:C70-PCBM; T-BHJ4: PBDB-T:ITIC:C60-PCBM. b) Average values from 20 devices with the maximum PCE values shown in parentheses. c) Integrated from the EQE spectra from 360 to 900?nm. All are ~5% errors. d) Estimated from the onset at the long wavelength edge (λonsetEQE) of the EQE spectra with equation: EgEQE=1240/λonsetEQE (Figure 3 3(b)). e) Energy loss estimated from the BHJ film’s EgEQE to the device’s Voc (Eloss= EgEQE?eVoc).

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1