Precise nanomedicine for intelligent therapy of cancer

logo

More info
  • ReceivedNov 28, 2018
  • AcceptedNov 29, 2018
  • PublishedDec 7, 2018

Abstract

Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.


Funded by

the National Natural Science Foundation of China(11621505,11435002,31671016)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (11621505, 11435002, 31671016).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


References

[1] Allemani C, Matsuda T, Di Carlo V, et al. Lancet, 2018, 391: 1023-1075 CrossRef Google Scholar

[2] Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J Control Release, 2015, 200: 138-157 CrossRef PubMed Google Scholar

[3] Laroui H, Rakhya P, Xiao B, Viennois E, Merlin D. Dig Liver Dis, 2013, 45: 995-1002 CrossRef PubMed Google Scholar

[4] Du B, Yu M, Zheng J. Nat Rev Mater, 2018, 3: 358-374 CrossRef ADS Google Scholar

[5] Qi GB, Gao YJ, Wang L, Wang H. Adv Mater, 2018, 30: 1703444 CrossRef PubMed Google Scholar

[6] Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han JY, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y. Nat Biotechnol, 2018, 36: 258-264 CrossRef PubMed Google Scholar

[7] Chen Y, Huang Z, Zhao H, Xu JF, Sun Z, Zhang X. ACS Appl Mater Interfaces, 2017, 9: 8602-8608 CrossRef Google Scholar

[8] Meng H, Xing G, Blanco E, Song Y, Zhao L, Sun B, Li X, Wang PC, Korotcov A, Li W, Liang XJ, Chen C, Yuan H, Zhao F, Chen Z, Sun T, Chai Z, Ferrari M, Zhao Y. Nanomed-Nanotechnol Biol Med, 2012, 8: 136-146 CrossRef PubMed Google Scholar

[9] Balogh LP. Nanomed-Nanotechnol Biol Med, 2015, 11: 867-869 CrossRef PubMed Google Scholar

[10] Chen C, Xing G, Wang J, Zhao Y, Li B, Tang J, Jia G, Wang T, Sun J, Xing L, Yuan H, Gao Y, Meng H, Chen Z, Zhao F, Chai Z, Fang X. Nano Lett, 2005, 5: 2050-2057 CrossRef PubMed ADS Google Scholar

[11] Liu J, Kang SG, Wang P, Wang Y, Lv X, Liu Y, Wang F, Gu Z, Yang Z, Weber JK, Tao N, Qin Z, Miao Q, Chen C, Zhou R, Zhao Y. Biomaterials, 2018, 152: 24-36 CrossRef PubMed Google Scholar

[12] Kang S, Zhou G, Yang P, Liu Y, Sun B, Huynh T, Meng H, Zhao L, Xing G, Chen C, Zhao Y, Zhou R. Proc Natl Acad Sci USA, 2012, 109: 15431-15436 CrossRef PubMed ADS Google Scholar

[13] Pan Y, Wang L, Kang S, Lu Y, Yang Z, Huynh T, Chen C, Zhou R, Guo M, Zhao Y. ACS Nano, 2015, 9: 6826-6836 CrossRef PubMed Google Scholar

[14] Meng H, Xing G, Sun B, Zhao F, Lei H, Li W, Song Y, Chen Z, Yuan H, Wang X, Long J, Chen C, Liang X, Zhang N, Chai Z, Zhao Y. ACS Nano, 2010, 4: 2773-2783 CrossRef PubMed Google Scholar

[15] Liang XJ, Meng H, Wang Y, He H, Meng J, Lu J, Wang PC, Zhao Y, Gao X, Sun B, Chen C, Xing G, Shen D, Gottesman MM, Wu Y, Yin JJ, Jia L. Proc Natl Acad Sci USA, 2010, 107: 7449-7454 CrossRef PubMed ADS Google Scholar

[16] Liu Y, Jiao F, Qiu Y, Li W, Lao F, Zhou G, Sun B, Xing G, Dong J, Zhao Y, Chai Z, Chen C. Biomaterials, 2009, 30: 3934-3945 CrossRef PubMed Google Scholar

[17] Yin JJ, Lao F, Fu PP, Wamer WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J, Liang XJ, Chen C. Biomaterials, 2009, 30: 611-621 CrossRef PubMed Google Scholar

[18] Tang J, Chen Z, Sun B, Dong J, Liu J, Zhou H, Wang L, Bai R, Miao Q, Zhao Y, Chen C, Liu Y. Nanomed-Nanotechnol Biol Med, 2016, 12: 945-954 CrossRef PubMed Google Scholar

[19] Liu Y, Chen C, Qian P, Lu X, Sun B, Zhang X, Wang L, Gao X, Li H, Chen Z, Tang J, Zhang W, Dong J, Bai R, Lobie PE, Wu Q, Liu S, Zhang H, Zhao F, Wicha MS, Zhu T, Zhao Y. Nat Commun, 2015, 6: 5988 CrossRef PubMed ADS Google Scholar

[20] Gallud A, Líbalová H, Fadeel B. Nanomedicine, 2015, 10: 1859-1861 CrossRef PubMed Google Scholar

[21] Ringsdorf H. J Polym Sci C Polym Symp, 1975, 51: 135-153 CrossRef Google Scholar

[22] Chen H, Chen Y, Wu H, Xu JF, Sun Z, Zhang X. Biomaterials, 2018, 178: 697-705 CrossRef PubMed Google Scholar

[23] Seeman NC, Sleiman HF. Nat Rev Mater, 2018, 3: 17068 CrossRef ADS Google Scholar

[24] Rothemund PWK. Nature, 2006, 440: 297-302 CrossRef PubMed ADS Google Scholar

[25] Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang ZG, Zou G, Liang X, Yan H, Ding B. J Am Chem Soc, 2012, 134: 13396-13403 CrossRef PubMed Google Scholar

[26] Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y. ACS Nano, 2014, 8: 6633-6643 CrossRef PubMed Google Scholar

[27] Jiang Q, Shi Y, Zhang Q, Li N, Zhan P, Song L, Dai L, Tian J, Du Y, Cheng Z, Ding B. Small, 2015, 11: 5134-5141 CrossRef PubMed Google Scholar

[28] Du Y, Jiang Q, Beziere N, Song L, Zhang Q, Peng D, Chi C, Yang X, Guo H, Diot G, Ntziachristos V, Ding B, Tian J. Adv Mater, 2016, 28: 10000-10007 CrossRef PubMed Google Scholar

[29] Liu J, Song L, Liu S, Jiang Q, Liu Q, Li N, Wang ZG, Ding B. Nano Lett, 2018, 18: 3328-3334 CrossRef PubMed ADS Google Scholar

[30] Ren D. J Nanomed Res, 2016, 4: 1--4. Google Scholar

[31] Fuchs S, Coester C. J Drug Deliv Sci Tech, 2010, 20: 331-342 CrossRef Google Scholar

[32] Roudi NE, Saraygord-Afshari N, Hemmaty M. F1000Research, 2017, 6: 1541 CrossRef Google Scholar

[33] Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Biomed Res Int, 2014, 2014(6679): 1-12 CrossRef PubMed Google Scholar

[34] Tarhini M, Greige-Gerges H, Elaissari A. Int J Pharm, 2017, 522: 172-197 CrossRef PubMed Google Scholar

[35] Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Nat Rev Chem, 2017, 1: 0063 CrossRef Google Scholar

[36] Douglas SM, Bachelet I, Church GM. Science, 2012, 335: 831-834 CrossRef PubMed ADS Google Scholar

[37] Bhatia D, Surana S, Chakraborty S, Koushika SP, Krishnan Y. Nat Commun, 2011, 2: 339 CrossRef PubMed ADS Google Scholar

[38] Amir Y, Ben-Ishay E, Levner D, Ittah S, Abu-Horowitz A, Bachelet I. Nat Nanotech, 2014, 9: 353-357 CrossRef PubMed ADS Google Scholar

[39] Yuan Y, Du C, Sun C, Zhu J, Wu S, Zhang Y, Ji T, Lei J, Yang Y, Gao N, Nie G. Nano Lett, 2018, 18: 921-928 CrossRef PubMed ADS Google Scholar

[40] Senapati S, Mahanta AK, Kumar S, Maiti P. Sig Transduct Target Ther, 2018, 3: 7 CrossRef PubMed Google Scholar

[41] Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J. J Clin Oncol, 2005, 23: 7794-7803 CrossRef PubMed Google Scholar

[42] Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Pharmacogenets Genomics, 2011, 21: 440-446 CrossRef PubMed Google Scholar

[43] D’Amico AV. JAMA, 1998, 280: 969 CrossRef Google Scholar

[44] Baskar R, Lee KA, Yeo R, Yeoh KW. Int J Med Sci, 2012, 9: 193-199 CrossRef PubMed Google Scholar

[45] DeVita Jr. VT, Chu E. Cancer Res, 2008, 68: 8643-8653 CrossRef PubMed Google Scholar

[46] Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, Haller DG, Ajani JA, Gunderson LL, Jessup JM, Martenson JA. N Engl J Med, 2001, 345: 725-730 CrossRef PubMed Google Scholar

[47] Zhang R, Song X, Liang C, Yi X, Song G, Chao Y, Yang Y, Yang K, Feng L, Liu Z. Biomaterials, 2017, 138: 13-21 CrossRef PubMed Google Scholar

[48] Cao W, Wang L, Xu H. Nano Today, 2015, 10: 717-736 CrossRef Google Scholar

[49] Song G, Cheng L, Chao Y, Yang K, Liu Z. Adv Mater, 2017, 29: 1700996 CrossRef PubMed Google Scholar

[50] Barcellos-Hoff MH, Park C, Wright EG. Nat Rev Cancer, 2005, 5: 867-875 CrossRef PubMed Google Scholar

[51] Xu H, Cao W, Zhang X. Acc Chem Res, 2013, 46: 1647-1658 CrossRef PubMed Google Scholar

[52] Ma N, Li Y, Xu H, Wang Z, Zhang X. J Am Chem Soc, 2010, 132: 442-443 CrossRef PubMed Google Scholar

[53] Cao W, Zhang X, Miao X, Yang Z, Xu H. Angew Chem Int Ed, 2013, 52: 6233-6237 CrossRef PubMed Google Scholar

[54] Ma N, Xu H, An L, Li J, Sun Z, Zhang X. Langmuir, 2011, 27: 5874-5878 CrossRef PubMed Google Scholar

[55] Cao W, Gu Y, Li T, Xu H. Chem Commun, 2015, 51: 7069-7071 CrossRef PubMed Google Scholar

[56] Jiang J, Cao DP. Sci China Chem, 2013, 56: 249-255 CrossRef Google Scholar

[57] Xu XH, Li CX, Li HP, Liu R, Jiang C, Wu Y, He B, Gu ZW. Sci China Chem, 2011, 54: 326-333 CrossRef Google Scholar

[58] Li YY, Dong HQ, Wang K, Shi DL, Zhang XZ, Zhuo RX. Sci China Chem, 2010, 53: 447-457 CrossRef Google Scholar

[59] Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Angew Chem Int Ed, 2009, 48: 872-897 CrossRef PubMed Google Scholar

[60] Hang Y, Cai X, Wang J, Jiang T, Hua J, Liu B. Sci China Chem, 2018, 61: 898-908 CrossRef Google Scholar

[61] Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Nat Nanotech, 2008, 3: 242-244 CrossRef PubMed ADS Google Scholar

[62] Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, de Aberasturi DJ, Kantner K, Khadem-Saba G, Montenegro JM, Rejman J, Rojo T, de Larramendi IR, Ufartes R, Wenk A, Parak WJ. Nat Nanotech, 2015, 10: 619-623 CrossRef PubMed ADS Google Scholar

[63] Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, ?berg C, Mahon E, Dawson KA. Nat Nanotech, 2013, 8: 137-143 CrossRef PubMed ADS Google Scholar

[64] Zhang H, Wu R. Sci China Chem, 2015, 58: 780-792 CrossRef Google Scholar

[65] Wang B. Sci China Ser B, 2005, 48: 385-394 CrossRef Google Scholar

[66] Hao X, Chen L, Sang W, Yan Q. Adv Sci, 2018, 5: 1700591 CrossRef PubMed Google Scholar

[67] Xu AP, Yang PP, Yang C, Gao YJ, Zhao XX, Luo Q, Li XD, Li LZ, Wang L, Wang H. Nanoscale, 2016, 8: 14078-14083 CrossRef PubMed ADS Google Scholar

[68] Zhao Y, Xing G, Chai Z. Nat Nanotech, 2008, 3: 191-192 CrossRef PubMed ADS Google Scholar

[69] Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. Environ Toxicol Chem, 2008, 27: 1825-1851 CrossRef Google Scholar

[70] Tonigold M, Simon J, Estupi?án D, Kokkinopoulou M, Reinholz J, Kintzel U, Kaltbeitzel A, Renz P, Domogalla MP, Steinbrink K, Lieberwirth I, Crespy D, Landfester K, Mail?nder V. Nat Nanotech, 2018, 13: 862-869 CrossRef PubMed ADS Google Scholar

[71] Li LL, Zeng Q, Liu WJ, Hu XF, Li Y, Pan J, Wan D, Wang H. ACS Appl Mater Interfaces, 2016, 8: 17936-17943 CrossRef Google Scholar

[72] Hu XX, He PP, Qi GB, Gao YJ, Lin YX, Yang C, Yang PP, Hao H, Wang L, Wang H. ACS Nano, 2017, 11: 4086-4096 CrossRef Google Scholar

[73] Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H. Adv Mater, 2016, 28: 254-262 CrossRef PubMed Google Scholar

[74] Qi GB, Zhang D, Liu FH, Qiao ZY, Wang H. Adv Mater, 2017, 29: 1703461 CrossRef PubMed Google Scholar

[75] Yang PP, Luo Q, Qi GB, Gao YJ, Li BN, Zhang JP, Wang L, Wang H. Adv Mater, 2017, 29: 1605869 CrossRef PubMed Google Scholar

[76] Zhang D, Qi GB, Zhao YX, Qiao SL, Yang C, Wang H. Adv Mater, 2015, 27: 6125-6130 CrossRef PubMed Google Scholar

[77] Chang H, Lv J, Gao X, Wang X, Wang H, Chen H, He X, Li L, Cheng Y. Nano Lett, 2017, 17: 1678-1684 CrossRef PubMed ADS Google Scholar

[78] Li LL, Qiao SL, Liu WJ, Ma Y, Wan D, Pan J, Wang H. Nat Commun, 2017, 8: 1276 CrossRef PubMed ADS Google Scholar

[79] An HW, Qiao SL, Li LL, Yang C, Lin YX, Wang Y, Qiao ZY, Wang L, Wang H. ACS Appl Mater Interfaces, 2016, 8: 19202-19207 CrossRef Google Scholar

[80] Callmann CE, Barback CV, Thompson MP, Hall DJ, Mattrey RF, Gianneschi NC. Adv Mater, 2015, 27: 4611-4615 CrossRef PubMed Google Scholar

[81] Lehn JM. Angew Chem Int Ed Engl, 1988, 27: 89-112 CrossRef Google Scholar

[82] Qiao ZY, Zhao WJ, Cong Y, Zhang D, Hu Z, Duan ZY, Wang H. Biomacromolecules, 2016, 17: 1643-1652 CrossRef PubMed Google Scholar

[83] Yang PP, Zhai YG, Qi GB, Lin YX, Luo Q, Yang Y, Xu AP, Yang C, Li YS, Wang L, Wang H. Small, 2016, 12: 5423-5430 CrossRef PubMed Google Scholar

[84] Liu Y, Zhang D, Qiao ZY, Qi GB, Liang XJ, Chen XG, Wang H. Adv Mater, 2015, 27: 5034-5042 CrossRef PubMed Google Scholar

[85] Li HJ, Du JZ, Du XJ, Xu CF, Sun CY, Wang HX, Cao ZT, Yang XZ, Zhu YH, Nie S, Wang J. Proc Natl Acad Sci USA, 2016, 113: 4164-4169 CrossRef PubMed ADS Google Scholar

[86] Perrault SD, Chan WCW. Proc Natl Acad Sci USA, 2010, 107: 11194-11199 CrossRef PubMed ADS Google Scholar

[87] Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, Xie Y, Xu C, Zhang F. Nat Commun, 2018, 9: 2898 CrossRef PubMed ADS Google Scholar

[88] Zhou L, Lv F, Liu L, Shen G, Yan X, Bazan GC, Wang S. Adv Mater, 2018, 30: 1704888 CrossRef PubMed Google Scholar

[89] Yang Z?, Xu K?, Guo Z?, Guo Z?, Xu B. Adv Mater, 2007, 19: 3152-3156 CrossRef Google Scholar

[90] Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q, Xu B. Angew Chem Int Ed, 2014, 53: 8104-8107 CrossRef PubMed Google Scholar

[91] Zhou J, Du X, Yamagata N, Xu B. J Am Chem Soc, 2016, 138: 3813-3823 CrossRef PubMed Google Scholar

[92] Miao Q, Bai X, Shen Y, Mei B, Gao J, Li L, Liang G. Chem Commun, 2012, 48: 9738-9740 CrossRef PubMed Google Scholar

[93] Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M, Maruyama T. J Am Chem Soc, 2015, 137: 770-775 CrossRef PubMed Google Scholar

[94] Bal W, Soko?owska M, Kurowska E, Faller P. Biochim Biophys Acta, 2013, 1830: 5444-5455 CrossRef PubMed Google Scholar

[95] Tanford C, Buzzell JG, Rands DG, Swanson SA. J Am Chem Soc, 1955, 77: 6421-6428 CrossRef Google Scholar

[96] Hagolle N, Relkin P, Dalgleish DG, Launay B. Food Hydrocolloids, 1997, 11: 311-317 CrossRef Google Scholar

[97] Hu HY, Du HN. J Protein Chem, 2000, 19: 177-183 CrossRef Google Scholar

[98] Xie J, Zheng Y, Ying JY. J Am Chem Soc, 2009, 131: 888-889 CrossRef PubMed Google Scholar

[99] Zhang B, Jin H, Li Y, Chen B, Liu S, Shi D. J Mater Chem, 2012, 22: 14494-14501 CrossRef Google Scholar

[100] Sun C, Yuan Y, Xu Z, Ji T, Tian Y, Wu S, Lei J, Li J, Gao N, Nie G. Bioconjug Chem, 2015, 26: 193-196 CrossRef PubMed Google Scholar

[101] Sun C, Yang H, Yuan Y, Tian X, Wang L, Guo Y, Xu L, Lei J, Gao N, Anderson GJ, Liang XJ, Chen C, Zhao Y, Nie G. J Am Chem Soc, 2011, 133: 8617-8624 CrossRef PubMed Google Scholar

[102] Chen D, Tang Q, Xue W, Xiang J, Zhang L, Wang X. J Biomed Res, 2010, 24: 26-32 CrossRef Google Scholar

[103] Desai N. Nanomed Nanotechnol Biol Med, 2007, 4: 339. Google Scholar

[104] Trynda-Lemiesz L. Bioorg Med Chem, 2004, 12: 3269-3275 CrossRef PubMed Google Scholar

[105] Zhang L, Hou S, Zhang J, Hu W, Wang C. Arch Pharm Res, 2010, 33: 1193-1198 CrossRef PubMed Google Scholar

[106] Zu Y, Yuan S, Zhao X, Zhang Y, Zhang X, Jiang R. Acta Pharm Sin, 2009, 44: 525–531. Google Scholar

[107] Guo CC, Tang YH, Hu HH, Yu LS, Jiang HD, Zeng S. J Pharm Anal, 2011, 1: 184-190 CrossRef PubMed Google Scholar

[108] Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S. J Mol Biol, 2005, 353: 38-52 CrossRef PubMed Google Scholar

[109] Setoguchi N, Takamura N, Fujita K, Ogata K, Tokunaga J, Nishio T, Chosa E, Arimori K, Kawai K, Yamamoto R. Biopharm Drug Dispos, 2013, 34: 125-136 CrossRef PubMed Google Scholar

[110] Ozer I, Tacal O I. Anal Biochem, 2001, 294: 1-6 CrossRef PubMed Google Scholar

[111] Takamura N, Maruyama T, Chosa E, Kawai K, Tsutsumi Y, Uryu Y, Yamasaki K, Deguchi T, Otagiri M. Drug Metab Disposition, 2005, 33: 596-602 CrossRef PubMed Google Scholar

[112] Irache J, Merodio M, Arnedo A, Camapanero M, Mirshahi M, Espuelas S. Mini Rev Med Chem, 2005, 5: 293-305 CrossRef Google Scholar

[113] Hu Q, Sun W, Lu Y, Bomba HN, Ye Y, Jiang T, Isaacson AJ, Gu Z. Nano Lett, 2016, 16: 1118-1126 CrossRef PubMed ADS Google Scholar

[114] Kundranda MN, Niu J. Drug Des Devel Ther, 2015, 9: 3767 CrossRef PubMed Google Scholar

[115] Kratz F. J Control Release, 2008, 132: 171-183 CrossRef PubMed Google Scholar

[116] Elsadek B, Kratz F. J Control Release, 2012, 157: 4-28 CrossRef PubMed Google Scholar

[117] Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL. J Am Chem Soc, 2003, 125: 4700-4701 CrossRef PubMed Google Scholar

[118] Gao F, Cai P, Yang W, Xue J, Gao L, Liu R, Wang Y, Zhao Y, He X, Zhao L, Huang G, Wu F, Zhao Y, Chai Z, Gao X. ACS Nano, 2015, 9: 4976-4986 CrossRef PubMed Google Scholar

[119] Andreozzi E, Wang P, Valenzuela A, Tu C, Gorin F, Dhenain M, Louie A. Bioconjug Chem, 2013, 24: 1455-1467 CrossRef PubMed Google Scholar

[120] Fang J, Chandrasekharan P, Liu XL, Yang Y, Lv YB, Yang CT, Ding J. Biomaterials, 2014, 35: 1636-1642 CrossRef PubMed Google Scholar

[121] Anishur Rahman ATM, Majewski P, Vasilev K. Contrast Media Mol Imag, 2013, 8: 92-95 CrossRef PubMed Google Scholar

[122] Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O. J Am Chem Soc, 2007, 129: 5076-5084 CrossRef PubMed Google Scholar

[123] Abdukayum A, Yang CX, Zhao Q, Chen JT, Dong LX, Yan XP. Anal Chem, 2014, 86: 4096-4101 CrossRef PubMed Google Scholar

[124] Ge J, Jia Q, Liu W, Guo L, Liu Q, Lan M, Zhang H, Meng X, Wang P. Adv Mater, 2015, 27: 4169-4177 CrossRef PubMed Google Scholar

[125] Yang T, Wang Y, Ke H, Wang Q, Lv X, Wu H, Tang Y, Yang X, Chen C, Zhao Y, Chen H. Adv Mater, 2016, 28: 5923-5930 CrossRef PubMed Google Scholar

[126] Yang T, Tang Y’, Liu L, Lv X, Wang Q, Ke H, Deng Y, Yang H, Yang X, Liu G, Zhao Y, Chen H. ACS Nano, 2017, 11: 1848-1857 CrossRef Google Scholar

[127] Zhang J, Hao G, Yao C, Yu J, Wang J, Yang W, Hu C, Zhang B. ACS Appl Mater Interfaces, 2016, 8: 16612-16621 CrossRef Google Scholar

[128] Wang Y, Wu Y, Liu Y, Shen J, Lv L, Li L, Yang L, Zeng J, Wang Y, Zhang LW, Li Z, Gao M, Chai Z. Adv Funct Mater, 2016, 26: 5335-5344 CrossRef Google Scholar

[129] Mao F, Wen L, Sun C, Zhang S, Wang G, Zeng J, Wang Y, Ma J, Gao M, Li Z. ACS Nano, 2016, 10: 11145-11155 CrossRef Google Scholar

[130] Zhou L, Yang T, Wang J, Wang Q, Lv X, Ke H, Guo Z, Shen J, Wang Y, Xing C, Chen H. Theranostics, 2017, 7: 764-774 CrossRef PubMed Google Scholar

[131] Yang T, Ke H, Wang Q, Tang Y, Deng Y, Yang H, Yang X, Yang P, Ling D, Chen C, Zhao Y, Wu H, Chen H. ACS Nano, 2017, 11: 10012-10024 CrossRef Google Scholar

[132] Chen WH, Luo GF, Lei Q, Hong S, Qiu WX, Liu LH, Cheng SX, Zhang XZ. ACS Nano, 2017, 11: 1419-1431 CrossRef Google Scholar

[133] Sun SK, Dong LX, Cao Y, Sun HR, Yan XP. Anal Chem, 2013, 85: 8436-8441 CrossRef PubMed Google Scholar

[134] Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S. Nature, 1991, 349: 684-687 CrossRef ADS Google Scholar

[135] Mann S. Nat Mater, 2009, 8: 781-792 CrossRef PubMed ADS Google Scholar

[136] Meldrum FC, Heywood BR, Mann S. Science, 1992, 257: 522-523 CrossRef ADS Google Scholar

[137] Sun S, Murray CB, Weller D, Folks L, Moser A. Science, 2000, 287: 1989-1992 CrossRef ADS Google Scholar

[138] Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y. Angew Chem Int Ed, 2004, 43: 2527-2530 CrossRef PubMed Google Scholar

[139] Kudr J, Nejdl L, Skalickova S, Zurek M, Milosavljevic V, Kensova R, Ruttkay-Nedecky B, Kopel P, Hynek D, Novotna M, Adam V, Kizek R. J Mater Chem B, 2015, 3: 2109-2118 CrossRef Google Scholar

[140] Meldrum FC, Douglas T, Levi S, Arosio P, Mann S. J InOrg Biochem, 1995, 58: 59-68 CrossRef Google Scholar

[141] Geninatti Crich S, Cutrin JC, Lanzardo S, Conti L, Kálmán FK, Szabó I, Lago NR, Iolascon A, Aime S. Contrast Media Mol Imag, 2012, 7: 281-288 CrossRef PubMed Google Scholar

[142] Wong KKW, Mann S. Adv Mater, 1996, 8: 928-932 CrossRef Google Scholar

[143] Warne B, Kasyutich OI, Mayes EL, Wiggins JAL, Wong KKW. IEEE Trans Magn, 2000, 36: 3009-3011 CrossRef ADS Google Scholar

[144] Chasteen ND, Harrison PM. J Struct Biol, 1999, 126: 182-194 CrossRef PubMed Google Scholar

[145] Hennequin B, Turyanska L, Ben T, Beltrán AM, Molina SI, Li M, Mann S, Patanè A, Thomas NR. Adv Mater, 2008, 20: 3592-3596 CrossRef Google Scholar

[146] Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M, Anderson GJ, Wei J, Zhao Y, Nie G. Biomaterials, 2011, 32: 1611-1618 CrossRef PubMed Google Scholar

[147] Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X. Nat Nanotech, 2012, 7: 459-464 CrossRef PubMed ADS Google Scholar

[148] Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Nat Nanotech, 2007, 2: 577-583 CrossRef PubMed ADS Google Scholar

[149] Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. ACS Nano, 2016, 10: 3453-3460 CrossRef Google Scholar

[150] Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Di Cesare Mannelli L, Ghelardini C, Ferretti AM, Ponti A, Sangregorio C, Ceci P. ACS Nano, 2014, 8: 4705-4719 CrossRef PubMed Google Scholar

[151] de la Escosura A, Nolte RJM, Cornelissen JJLM. J Mater Chem, 2009, 19: 2274-2278 CrossRef Google Scholar

[152] Bode SA, Minten IJ, Nolte RJM, Cornelissen JJLM. Nanoscale, 2011, 3: 2376-2389 CrossRef PubMed ADS Google Scholar

[153] Uchida M, Klem M?, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold L?, Young M, Douglas T. Adv Mater, 2007, 19: 1025-1042 CrossRef Google Scholar

[154] Douglas T, Young M. Nature, 1998, 393: 152-155 CrossRef ADS Google Scholar

[155] Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M. Adv Mater, 2002, 14: 415-418 CrossRef Google Scholar

[156] Klem MT, Young M, Douglas T. J Mater Chem, 2008, 18: 3821-3823 CrossRef Google Scholar

[157] de la Escosura A, Verwegen M, Sikkema FD, Comellas-Aragonès M, Kirilyuk A, Rasing T, Nolte RJM, Cornelissen JJLM. Chem Commun, 2008, 378: 1542 CrossRef PubMed Google Scholar

[158] Liu C, Chung SH, Jin Q, Sutton A, Yan F, Hoffmann A, Kay BK, Bader SD, Makowski L, Chen L. J Magn Magn Mater, 2006, 302: 47-51 CrossRef ADS Google Scholar

[159] Hooker JM, Datta A, Botta M, Raymond KN, Francis MB. Nano Lett, 2007, 7: 2207-2210 CrossRef PubMed ADS Google Scholar

[160] Knez M, Bittner AM, Boes F, Wege C, Jeske H, Maiβ E, Kern K. Nano Lett, 2003, 3: 1079-1082 CrossRef ADS Google Scholar

[161] Knez M, Sumser M, Bittner A?, Wege C, Jeske H, Martin T?, Kern K. Adv Funct Mater, 2004, 14: 116-124 CrossRef Google Scholar

[162] Tsukamoto R, Muraoka M, Seki M, Tabata H, Yamashita I. Chem Mater, 2007, 19: 2389-2391 CrossRef Google Scholar

[163] Dujardin E, Peet C, Stubbs G, Culver JN, Mann S. Nano Lett, 2003, 3: 413-417 CrossRef ADS Google Scholar

[164] American Cancer Society. cancer facts & figures. 2015. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2015/. Google Scholar

[165] Subramanian AP, John AA, Vellayappan MV, Balaji A, Jaganathan SK, Supriyanto E, Yusof M. RSC Adv, 2015, 5: 35608-35621 CrossRef Google Scholar

[166] Hanahan D, Weinberg RA. Cell, 2000, 100: 57-70 CrossRef Google Scholar

[167] Hanahan D, Weinberg RA. Cell, 2011, 144: 646-674 CrossRef PubMed Google Scholar

[168] Cansiz S, Zhang L, Wu C, Wu Y, Teng IT, Hou W, Wang Y, Wan S, Cai R, Jin C, Liu Q, Tan W. Chem Asian J, 2015, 10: 2084-2094 CrossRef PubMed Google Scholar

[169] He L, Lu DQ, Liang H, Xie S, Luo C, Hu M, Xu L, Zhang X, Tan W. ACS Nano, 2017, 11: 4060-4066 CrossRef Google Scholar

[170] He L, Lu D, Liang H, Xie S, Zhang X, Liu Q, Yuan Q, Tan W. J Am Chem Soc, 2018, 140: 258-263 CrossRef PubMed Google Scholar

[171] Peng R, Zheng X, Lyu Y, Xu L, Zhang X, Ke G, Liu Q, You C, Huan S, Tan W. J Am Chem Soc, 2018, 140: 9793-9796 CrossRef PubMed Google Scholar

[172] Zhu G, Hu R, Zhao Z, Chen Z, Zhang X, Tan W. J Am Chem Soc, 2013, 135: 16438-16445 CrossRef PubMed Google Scholar

[173] Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, Tan W. Angew Chem, 2014, 126: 5931-5936 CrossRef Google Scholar

[174] Han S, Lee JS, Lee JB. Nanoscale, 2017, 9: 14094-14102 CrossRef PubMed Google Scholar

[175] Bi S, Dong Y, Jia X, Chen M, Zhong H, Ji B. Nanoscale, 2015, 7: 7361-7367 CrossRef PubMed ADS Google Scholar

[176] Li J, Zheng C, Cansiz S, Wu C, Xu J, Cui C, Liu Y, Hou W, Wang Y, Zhang L, Teng I, Yang HH, Tan W. J Am Chem Soc, 2015, 137: 1412-1415 CrossRef PubMed Google Scholar

[177] Ding F, Mou Q, Ma Y, Pan G, Guo Y, Tong G, Choi CHJ, Zhu X, Zhang C. Angew Chem Int Ed, 2018, 57: 3064-3068 CrossRef PubMed Google Scholar

[178] Chen WH, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I. Chem Sci, 2017, 8: 5769-5780 CrossRef PubMed Google Scholar

[179] Chen WH, Liao WC, Sohn YS, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv Funct Mater, 2017, 28: 1870053 CrossRef Google Scholar

[180] Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. Nature, 1996, 382: 607-609 CrossRef PubMed ADS Google Scholar

[181] Cutler JI, Auyeung E, Mirkin CA. J Am Chem Soc, 2012, 134: 1376-1391 CrossRef PubMed Google Scholar

[182] Li H, Zhang B, Lu X, Tan X, Jia F, Xiao Y, Cheng Z, Li Y, Silva DO, Schrekker HS, Zhang K, Mirkin CA. Proc Natl Acad Sci USA, 2018, 115: 4340-4344 CrossRef PubMed Google Scholar

[183] Mirkin CA, Petrosko SH. Clin Chem, 2018, 64: 971-972 CrossRef Google Scholar

[184] Liu Z, Zhao J, Zhang R, Han G, Zhang C, Liu B, Zhang Z, Han MY, Gao X. ACS Nano, 2018, 12: 3629-3637 CrossRef Google Scholar

[185] Jeong JH, Park TG. Bioconjug Chem, 2001, 12: 917-923 CrossRef Google Scholar

[186] Ding K, Alemdaroglu FE, B?rsch M, Berger R, Herrmann A. Angew Chem Int Ed, 2007, 46: 1172-1175 CrossRef PubMed Google Scholar

[187] Huang F, You M, Chen T, Zhu G, Liang H, Tan W. Chem Commun, 2014, 50: 3103-3105 CrossRef PubMed Google Scholar

[188] Zhang R, Gao S, Wang Z, Han D, Liu L, Ma Q, Tan W, Tian J, Chen X. Adv Funct Mater, 2017, 27: 1701027 CrossRef PubMed Google Scholar

[189] Jin C, Zhang H, Zou J, Liu Y, Zhang L, Li F, Wang R, Xuan W, Ye M, Tan W. Angew Chem Int Ed, 2018, 57: 8994-8997 CrossRef PubMed Google Scholar

[190] Hussain T, Nguyen QT. Adv Drug Deliver Rev, 2014, 66: 90-100 CrossRef PubMed Google Scholar

[191] Weissleder R. Science, 2006, 312: 1168-1171 CrossRef PubMed ADS Google Scholar

[192] Pysz MA, Gambhir SS, Willmann JK. Clin Radiol, 2010, 65: 500-516 CrossRef PubMed Google Scholar

[193] Margolis DJA, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Radiology, 2007, 245: 333-356 CrossRef PubMed Google Scholar

[194] Hickson J. Urol Oncol Semin Orig Investig, 2009, 27: 295-297 CrossRef PubMed Google Scholar

[195] Liu JB, Yang XH, He XX, Wang KM, Wang Q, Guo QP, Shi H, Huang J, Huo XQ. Sci China Chem, 2011, 54: 1157-1176 CrossRef Google Scholar

[196] Li K, Ding D, Zhao QL, Sun JZ, Tang BZ, Liu B. Sci China Chem, 2013, 56: 1228-1233 CrossRef Google Scholar

[197] Zhang H, Fan J, Wang J, Zhang S, Dou B, Peng X. J Am Chem Soc, 2013, 135: 11663-11669 CrossRef PubMed Google Scholar

[198] Zhang H, Fan J, Wang J, Dou B, Zhou F, Cao J, Qu J, Cao Z, Zhao W, Peng X. J Am Chem Soc, 2013, 135: 17469-17475 CrossRef PubMed Google Scholar

[199] Fan J, Guo S, Wang S, Kang Y, Yao Q, Wang J, Gao X, Wang H, Du J, Peng X. Chem Commun, 2017, 53: 4857-4860 CrossRef PubMed Google Scholar

[200] Gu K, Xu Y, Li H, Guo Z, Zhu S, Zhu S, Shi P, James TD, Tian H, Zhu WH. J Am Chem Soc, 2016, 138: 5334-5340 CrossRef PubMed Google Scholar

[201] Wang F, Zhu Y, Zhou L, Pan L, Cui Z, Fei Q, Luo S, Pan D, Huang Q, Wang R, Zhao C, Tian H, Fan C. Angew Chem Int Ed, 2015, 54: 7349-7353 CrossRef PubMed Google Scholar

[202] Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361-5388 CrossRef PubMed Google Scholar

[203] Gao M, Su H, Lin G, Li S, Yu X, Qin A, Zhao Z, Zhang Z, Tang BZ. Nanoscale, 2016, 8: 15027-15032 CrossRef PubMed Google Scholar

[204] Shi H, Tang Z, Kim Y, Nie H, Huang YF, He X, Deng K, Wang K, Tan W. Chem Asian J, 2010, 5: 2209-2213 CrossRef PubMed Google Scholar

[205] Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W. Anal Chem, 2008, 80: 721-728 CrossRef PubMed Google Scholar

[206] Chen X, Este?vez MC, Zhu Z, Huang YF, Chen Y, Wang L, Tan W. Anal Chem, 2009, 81: 7009-7014 CrossRef PubMed Google Scholar

[207] Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B. Proc Natl Acad Sci USA, 2011, 108: 3900-3905 CrossRef PubMed ADS Google Scholar

[208] Wang Y, Zhou K, Huang G, Hensley C, Huang X, Ma X, Zhao T, Sumer BD, DeBerardinis RJ, Gao J. Nat Mater, 2014, 13: 204-212 CrossRef PubMed ADS Google Scholar

[209] Zheng X, Wang X, Mao H, Wu W, Liu B, Jiang X. Nat Commun, 2015, 6: 5834 CrossRef PubMed ADS Google Scholar

[210] Zheng X, Tang H, Xie C, Zhang J, Wu W, Jiang X. Angew Chem Int Ed, 2015, 54: 8094-8099 CrossRef PubMed Google Scholar

[211] Zheng X, Mao H, Huo D, Wu W, Liu B, Jiang X. Nat Biomed Eng, 2017, 1: 0057 CrossRef Google Scholar

[212] Hori SS, Tummers WS, Gambhir SS. Nat Biomed Eng, 2017, 1: 0062. Google Scholar

[213] Wan H, Yue J, Zhu S, Uno T, Zhang X, Yang Q, Yu K, Hong G, Wang J, Li L, Ma Z, Gao H, Zhong Y, Su J, Antaris AL, Xia Y, Luo J, Liang Y, Dai H. Nat Commun, 2018, 9: 1171 CrossRef PubMed ADS Google Scholar

[214] Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi OK, Alamparambil ZR, Hong X, Cheng Z, Dai H. Nat Mater, 2016, 15: 235-242 CrossRef PubMed ADS Google Scholar

[215] Yao J, Wang LV. IEEE Photonics J, 2014, 6: 1-6 CrossRef PubMed ADS Google Scholar

[216] Wang LV, Gao L. Annu Rev Biomed Eng, 2014, 16: 155-185 CrossRef PubMed Google Scholar

[217] Chen H, Zhang W, Zhu G, Xie J, Chen X. Nat Rev Mater, 2017, 2: 17024 CrossRef PubMed ADS Google Scholar

[218] Park SM, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Nat Rev Mater, 2017, 2: 17014 CrossRef PubMed ADS Google Scholar

[219] Wang Z, Wang J, Liu G. Chapter 19: Theranostic magnetic nanoparticles as molecular imaging agents for sirna delivery. In: Conde J, Ed. Handbook of Nanomaterials for Cancer Theranostics. Elsevier, 2018. 551–576. Google Scholar

[220] Wang J, Mi P, Lin G, Wáng YXJ, Liu G, Chen X. Adv Drug Deliver Rev, 2016, 104: 44-60 CrossRef PubMed Google Scholar

[221] Goel S, England CG, Chen F, Cai W. Adv Drug Deliver Rev, 2017, 113: 157-176 CrossRef PubMed Google Scholar

[222] Xing Y, Zhao J, Conti PS, Chen K. Theranostics, 2014, 4: 290-306 CrossRef PubMed Google Scholar

[223] Kim BYS, Rutka JT, Chan WCW. N Engl J Med, 2010, 363: 2434-2443 CrossRef PubMed Google Scholar

[224] Niu G, Chen X. Nat Nanotech, 2018, 13: 359-360 CrossRef PubMed ADS Google Scholar

[225] Mirshojaei SF, Ahmadi A, Morales-Avila E, Ortiz-Reynoso M, Reyes-Perez H. J Drug Target, 2016, 24: 91-101 CrossRef PubMed Google Scholar

[226] Thorek D, Robertson R, Bacchus WA, Hahn J, Rothberg J, Beattie BJ, Grimm J. Am J Nucl Med Mol Imaging, 2012, 2: 163–173. Google Scholar

[227] Ciarrocchi E, Belcari N. EJNMMI Phys, 2017, 4: 14 CrossRef PubMed Google Scholar

[228] Hu Z, Liang J, Yang W, Fan W, Li C, Ma X, Chen X, Ma X, Li X, Qu X, Wang J, Cao F, Tian J. Opt Express, 2010, 18: 24441-24450 CrossRef PubMed ADS Google Scholar

[229] Zhong J, Qin C, Yang X, Zhu S, Zhang X, Tian J. Int J Biomed Imag, 2011, 2011(7): 1-6 CrossRef PubMed Google Scholar

[230] Hu Z, Ma X, Qu X, Yang W, Liang J, Wang J, Tian J. PLoS ONE, 2012, 7: e37623 CrossRef PubMed ADS Google Scholar

[231] Zhong J, Tian J, Yang X, Qin C. Ann Biomed Eng, 2011, 39: 1728-1735 CrossRef PubMed Google Scholar

[232] Hu Z, Yang W, Ma X, Ma W, Qu X, Liang J, Wang J, Tian J. Mol Imag, 2013, 12: 173-181 CrossRef Google Scholar

[233] Yang W, Qin W, Hu Z, Suo Y, Zhao R, Ma X, Ma W, Wang T, Liang J, Tian J, Wang J. Nucl Med Biol, 2012, 39: 948-953 CrossRef PubMed Google Scholar

[234] Hu Z, Zhang Z, Guo H, Liu M, Shi X, Tian J. J Nucl Med, 2017, 58: 527. Google Scholar

[235] Hu Z, Zhang Z, Guo H, Tian J. J Nucl Med, 2018, 59: 246. Google Scholar

[236] Spinelli AE, Boschi F. Phys Med, 2015, 31: 120-129 CrossRef PubMed Google Scholar

[237] Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, Tian J, Chen X. Theranostics, 2014, 4: 1072-1084 CrossRef PubMed Google Scholar

[238] Grootendorst MR, Cariati M, Kothari A, Tuch DS, Purushotham A. Clin Transl Imag, 2016, 4: 353-366 CrossRef PubMed Google Scholar

[239] Spinelli AE, Schiariti MP, Grana CM, Ferrari M, Cremonesi M, Boschi F. J Biomed Opt, 2016, 21: 050502 CrossRef PubMed ADS Google Scholar

[240] Currie G, Wheat J, Davidson R, Kiat H. Radiographer, 2011, 58: 46-52 CrossRef Google Scholar

[241] Bailey DL, Willowson KP. J Nucl Med, 2013, 54: 83-89 CrossRef PubMed Google Scholar

[242] Iwata K, Coco B, Zhang J, Wagenaar D. J Nucl Med, 2010, 51: 527–527. Google Scholar

[243] Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M. Rawgraphs: a visualisation platform to create open outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. New York: ACM, 2017. Google Scholar

[244] Chu C, Lin H, Liu H, Wang X, Wang J, Zhang P, Gao H, Huang C, Zeng Y, Tan Y, Liu G, Chen X. Adv Mater, 2017, 29: 1605928 CrossRef PubMed Google Scholar

[245] Hu X, Zhai S, Liu G, Xing D, Liang H, Liu S. Adv Mater, 2018, 30: 1706307 CrossRef PubMed Google Scholar

[246] Lei Z, Wang J, Lv P, Liu G. Sci Bull, 2018, 63: 663-665 CrossRef Google Scholar

[247] Ren E, Lei Z, Wang J, Zhang Y, Liu G. Adv Ther, 1: 1800080. Google Scholar

[248] Li L, Pang X, Liu G. ACS Biomater Sci Eng, 2018, 4: 1928-1941 CrossRef Google Scholar

[249] Miao T, Wang J, Zeng Y, Liu G, Chen X. Adv Sci, 2018, 5: 1700513 CrossRef PubMed Google Scholar

[250] Lamb J, Holland JP. J Nucl Med, 2018, 59: 382-389 CrossRef PubMed Google Scholar

[251] Stockhofe K, Postema JM, Schieferstein H, Ross TL. Pharmaceuticals, 2014, 7: 392-418 CrossRef PubMed Google Scholar

[252] Guerrero S, Herance JR, Rojas S, Mena JF, Gispert JD, Acosta GA, Albericio F, Kogan MJ. Bioconjug Chem, 2012, 23: 399-408 CrossRef PubMed Google Scholar

[253] Rojas S, Gispert JD, Abad S, Buaki-Sogo M, Victor VM, Garcia H, Herance JR. Mol Pharm, 2012, 9: 3543-3550 CrossRef PubMed Google Scholar

[254] Torres Martin de Rosales R, Tavaré R, Paul RL, Jauregui-Osoro M, Protti A, Glaria A, Varma G, Szanda I, Blower PJ. Angew Chem Int Ed, 2011, 50: 5509-5513 CrossRef PubMed Google Scholar

[255] Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. Bioconjug Chem, 2009, 20: 397-401 CrossRef PubMed Google Scholar

[256] Thorek DLJ, Ulmert D, Diop NFM, Lupu ME, Doran MG, Huang R, Abou DS, Larson SM, Grimm J. Nat Commun, 2014, 5: 3097 CrossRef PubMed ADS Google Scholar

[257] Goel S, Chen F, Ehlerding EB, Cai W. Small, 2014, 10: 3825-3830 CrossRef PubMed Google Scholar

[258] Black KCL, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, Zhao Y, Cutler CS, Wang LV, Liu Y, Xia Y. ACS Nano, 2014, 8: 4385-4394 CrossRef PubMed Google Scholar

[259] Boros E, Bowen AM, Josephson L, Vasdev N, Holland JP. Chem Sci, 2015, 6: 225-236 CrossRef PubMed Google Scholar

[260] Chen F, Ellison PA, Lewis CM, Hong H, Zhang Y, Shi S, Hernandez R, Meyerand ME, Barnhart TE, Cai W. Angew Chem Int Ed, 2013, 52: 13319-13323 CrossRef PubMed Google Scholar

[261] Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, Meyerand ME, Nickles RJ, Cai W. Adv Mater, 2014, 26: 5119-5123 CrossRef PubMed Google Scholar

[262] Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Song X, Goel S, Barnhart TE, Cai W, Liu Z. ACS Nano, 2015, 9: 950-960 CrossRef PubMed Google Scholar

[263] Goel S, Chen F, Luan S, Valdovinos HF, Shi S, Graves SA, Ai F, Barnhart TE, Theuer CP, Cai W. Adv Sci, 2016, 3: 1600122 CrossRef PubMed Google Scholar

[264] Shi S, Xu C, Yang K, Goel S, Valdovinos HF, Luo H, Ehlerding EB, England CG, Cheng L, Chen F, Nickles RJ, Liu Z, Cai W. Angew Chem Int Ed, 2017, 56: 2889-2892 CrossRef PubMed Google Scholar

[265] Shaffer TM, Wall MA, Harmsen S, Longo VA, Drain CM, Kircher MF, Grimm J. Nano Lett, 2015, 15: 864-868 CrossRef PubMed ADS Google Scholar

[266] Wall MA, Shaffer TM, Harmsen S, Tschaharganeh DF, Huang CH, Lowe SW, Drain CM, Kircher MF. Theranostics, 2017, 7: 3068-3077 CrossRef PubMed Google Scholar

[267] Son DH, Hughes SM, Yin Y, Paul Alivisatos A. Science, 2004, 306: 1009-1012 CrossRef PubMed ADS Google Scholar

[268] Sun X, Huang X, Guo J, Zhu W, Ding Y, Niu G, Wang A, Kiesewetter DO, Wang ZL, Sun S, Chen X. J Am Chem Soc, 2014, 136: 1706-1709 CrossRef PubMed Google Scholar

[269] Sun Y, Zhu X, Peng J, Li F. ACS Nano, 2013, 7: 11290-11300 CrossRef PubMed Google Scholar

[270] Di Pasqua AJ, Yuan H, Chung Y, Kim JK, Huckle JE, Li C, Sadgrove M, Tran TH, Jay M, Lu X. J Nucl Med, 2013, 54: 111-116 CrossRef PubMed Google Scholar

[271] Munaweera I, Shi Y, Koneru B, Saez R, Aliev A, Di Pasqua AJ, Balkus Jr. KJ. Mol Pharm, 2015, 12: 3588-3596 CrossRef PubMed Google Scholar

[272] Pérez-Campa?a C, Gómez-Vallejo V, Puigivila M, Martín A, Calvo-Fernández T, Moya SE, Ziolo RF, Reese T, Llop J. ACS Nano, 2013, 7: 3498-3505 CrossRef PubMed Google Scholar

[273] Pérez-Campa?a C, Gómez-Vallejo V, Martin A, San Sebastián E, Moya SE, Reese T, Ziolo RF, Llop J. Analyst, 2012, 137: 4902-4906 CrossRef PubMed ADS Google Scholar

[274] Tang L, Sun X, Liu N, Zhou Z, Yu F, Zhang X, Sun X, Chen X. ACS Appl Nano Mater, 2018, 1: 1741-1749 CrossRef Google Scholar

[275] Liu Y, Miao Q, Zou P, Liu L, Wang X, An L, Zhang X, Qian X, Luo S, Liang G. Theranostics, 2015, 5: 1058-1067 CrossRef PubMed Google Scholar

[276] Wang J, Tao W, Chen X, Farokhzad OC, Liu G. Theranostics, 2017, 7: 3915-3919 CrossRef PubMed Google Scholar

[277] Wang J, Liu G, Leung K, Loffroy R, Lu PX, J. Wáng Y. Curr Pharm Des, 2015, 21: 5401-5416 CrossRef Google Scholar

[278] Wang J, Liu G. Angew Chem Int Ed, 2018, 57: 3008-3010 CrossRef PubMed Google Scholar

[279] Li Y, Zhang W, Wu H, Liu G. Biomed Res Int, 2014, 2014(4): 1-13 CrossRef PubMed Google Scholar

[280] Ferrari M. Nat Rev Cancer, 2005, 5: 161-171 CrossRef PubMed Google Scholar

[281] Nie S, Xing Y, Kim GJ, Simons JW. Annu Rev Biomed Eng, 2007, 9: 257-288 CrossRef Google Scholar

[282] Chan WCW, Nie S. Science, 1998, 281: 2016-2018 CrossRef ADS Google Scholar

[283] Alivisatos AP. Science, 1996, 271: 933-937 CrossRef ADS Google Scholar

[284] Bruchez Jr. M, Moronne M, Gin P, Weiss S, Paul Alivisatos A. Science, 1998, 281: 2013-2016 CrossRef ADS Google Scholar

[285] Peng CW, Liu XL, Chen C, Liu X, Yang XQ, Pang DW, Zhu XB, Li Y. Biomaterials, 2011, 32: 2907-2917 CrossRef PubMed Google Scholar

[286] Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD, Zeng LB, Zhang ZL, Pang DW, Li Y. Biomaterials, 2009, 30: 2912-2918 CrossRef PubMed Google Scholar

[287] Wen CY, Wu LL, Zhang ZL, Liu YL, Wei SZ, Hu J, Tang M, Sun EZ, Gong YP, Yu J, Pang DW. ACS Nano, 2014, 8: 941-949 CrossRef PubMed Google Scholar

[288] Wen CY, Xie HY, Zhang ZL, Wu LL, Hu J, Tang M, Wu M, Pang DW. Nanoscale, 2016, 8: 12406-12429 CrossRef PubMed ADS Google Scholar

[289] Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Nat Commun, 2017, 8: 902 CrossRef PubMed ADS Google Scholar

[290] Chen C, Sun SR, Gong YP, Qi CB, Peng CW, Yang XQ, Liu SP, Peng J, Zhu S, Hu MB, Pang DW, Li Y. Biomaterials, 2011, 32: 7592-7599 CrossRef PubMed Google Scholar

[291] Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Nat Mater, 2005, 4: 435-446 CrossRef PubMed ADS Google Scholar

[292] Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. Nat Biotechnol, 2004, 22: 969-976 CrossRef PubMed Google Scholar

[293] Wang HZ, Wang HY, Liang RQ, Ruan KC. Acta Biochim Biophysica Sin, 2004, 36: 681-686 CrossRef Google Scholar

[294] Yezhelyev M?, Al-Hajj A, Morris C, Marcus A?, Liu T, Lewis M, Cohen C, Zrazhevskiy P, Simons J?, Rogatko A, Nie S, Gao X, O’Regan R?. Adv Mater, 2007, 19: 3146-3151 CrossRef Google Scholar

[295] Zhong Y, Ma Z, Zhu S, Yue J, Zhang M, Antaris AL, Yuan J, Cui R, Wan H, Zhou Y, Wang W, Huang NF, Luo J, Hu Z, Dai H. Nat Commun, 2017, 8: 737 CrossRef PubMed ADS Google Scholar

[296] Hong G, Diao S, Antaris AL, Dai H. Chem Rev, 2015, 115: 10816-10906 CrossRef PubMed Google Scholar

[297] Hong G, Antaris AL, Dai H. Nat Biomed Eng, 2017, 1: 0010 CrossRef Google Scholar

[298] Diao S, Blackburn JL, Hong G, Antaris AL, Chang J, Wu JZ, Zhang B, Cheng K, Kuo CJ, Dai H. Angew Chem Int Ed, 2015, 54: 14758-14762 CrossRef PubMed Google Scholar

[299] Kim S, Fisher B, Eisler HJ, Bawendi M. J Am Chem Soc, 2003, 125: 11466-11467 CrossRef PubMed Google Scholar

[300] Seo H, Kim SW. Chem Mater, 2007, 19: 2715-2717 CrossRef Google Scholar

[301] Jiang W, Singhal A, Zheng J, Wang C, Chan WCW. Chem Mater, 2006, 18: 4845-4854 CrossRef Google Scholar

[302] Bailey RE, Nie S. J Am Chem Soc, 2003, 125: 7100-7106 CrossRef PubMed Google Scholar

[303] Qian H, Dong C, Peng J, Qiu X, Xu Y, Ren J. J Phys Chem C, 2007, 111: 16852-16857 CrossRef Google Scholar

[304] Cademartiri L, Bertolotti J, Sapienza R, Wiersma DS, von Freymann G, Ozin GA. J Phys Chem B, 2006, 110: 671-673 CrossRef PubMed Google Scholar

[305] Cui R, Gu YP, Zhang ZL, Xie ZX, Tian ZQ, Pang DW. J Mater Chem, 2012, 22: 3713-3716 CrossRef Google Scholar

[306] Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q. J Am Chem Soc, 2010, 132: 1470-1471 CrossRef PubMed Google Scholar

[307] Shen S, Zhang Y, Peng L, Du Y, Wang Q. Angew Chem Int Ed, 2011, 50: 7115-7118 CrossRef PubMed Google Scholar

[308] Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, Dai H. Angew Chem Int Ed, 2012, 51: 9818-9821 CrossRef PubMed Google Scholar

[309] Zhang Y, Hong G, Zhang Y, Chen G, Li F, Dai H, Wang Q. ACS Nano, 2012, 6: 3695-3702 CrossRef PubMed Google Scholar

[310] Jiang P, Zhu CN, Zhang ZL, Tian ZQ, Pang DW. Biomaterials, 2012, 33: 5130-5135 CrossRef PubMed Google Scholar

[311] Zhao Y, Zheng C, Wang Q, Fang J, Zhou G, Zhao H, Yang Y, Xu H, Feng G, Yang X. Adv Funct Mater, 2012, 21: 2035-2042 CrossRef Google Scholar

[312] Zhu CN, Chen G, Tian ZQ, Wang W, Zhong WQ, Li Z, Zhang ZL, Pang DW. Small, 2017, 13: 1602309 CrossRef PubMed Google Scholar

[313] Zhu CN, Jiang P, Zhang ZL, Zhu DL, Tian ZQ, Pang DW. ACS Appl Mater Interfaces, 2013, 5: 1186-1189 CrossRef PubMed Google Scholar

[314] Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG. J Am Chem Soc, 2006, 128: 2526-2527 CrossRef PubMed Google Scholar

[315] Cao YW, Banin U. J Am Chem Soc, 2000, 122: 9692-9702 CrossRef Google Scholar

[316] Cao YW, Banin U. Angew Chem Int Ed, 1999, 38: 3692-3694 CrossRef Google Scholar

[317] Haubold S, Haase M, Kornowski A, Weller H. ChemPhysChem, 2001, 2: 331-334 CrossRef Google Scholar

[318] Xie R, Battaglia D, Peng X. J Am Chem Soc, 2007, 129: 15432-15433 CrossRef PubMed Google Scholar

[319] Erogbogbo F, Yong KT, Roy I, Hu R, Law WC, Zhao W, Ding H, Wu F, Kumar R, Swihart MT, Prasad PN. ACS Nano, 2010, 5: 413-423 CrossRef PubMed Google Scholar

[320] Zhang M, Yue J, Cui R, Ma Z, Wan H, Wang F, Zhu S, Zhou Y, Kuang Y, Zhong Y, Pang DW, Dai H. Proc Natl Acad Sci USA, 2018, 115: 6590-6595 CrossRef PubMed Google Scholar

[321] Zhang Y, Zhang Y, Hong G, He W, Zhou K, Yang K, Li F, Chen G, Liu Z, Dai H, Wang Q. Biomaterials, 2013, 34: 3639-3646 CrossRef PubMed Google Scholar

[322] Tang H, Yang ST, Yang YF, Ke DM, Liu JH, Chen X, Wang H, Liu Y. ACS Appl Mater Interfaces, 2016, 8: 17859-17869 CrossRef Google Scholar

[323] Ge XL, Zhang ZL, Xie ZX, Cui R, Pang DW. New J Chem, 2017, 41: 12721-12725 CrossRef Google Scholar

[324] Gu YP, Cui R, Zhang ZL, Xie ZX, Pang DW. J Am Chem Soc, 2012, 134: 79-82 CrossRef PubMed Google Scholar

[325] Zhao JY, Chen G, Gu YP, Cui R, Zhang ZL, Yu ZL, Tang B, Zhao YF, Pang DW. J Am Chem Soc, 2016, 138: 1893-1903 CrossRef PubMed Google Scholar

[326] Niidome T, Huang L. Gene Ther, 2002, 9: 1647-1652 CrossRef PubMed Google Scholar

[327] Chen J, Guo Z, Tian H, Chen X. Mol Ther-Meth Clin Dev, 2016, 3: 16023 CrossRef PubMed Google Scholar

[328] Yu X, Gong L, Zhang J, Zhao Z, Zhang X, Tan W. Sci China Chem, 2017, 60: 1318-1323 CrossRef Google Scholar

[329] Xu C, Tian H, Chen X. Sci China Chem, 2017, 60: 319-328 CrossRef Google Scholar

[330] Lehrman S. Nature, 1999, 401: 517-518 CrossRef PubMed ADS Google Scholar

[331] Tian H, Chen J, Chen X. Small, 2013, 9: 2034-2044 CrossRef PubMed Google Scholar

[332] Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Adv Drug Deliver Rev, 2017, 115: 115-154 CrossRef PubMed Google Scholar

[333] Chen J, Dong X, Feng T, Lin L, Guo Z, Xia J, Tian H, Chen X. Acta Biomater, 2015, 26: 45-53 CrossRef PubMed Google Scholar

[334] Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y. Angew Chem Int Ed, 2015, 54: 11647-11651 CrossRef PubMed Google Scholar

[335] Chen J, Tian H, Dong X, Guo Z, Jiao Z, Li F, Kano A, Maruyama A, Chen X. Macromol Biosci, 2013, 13: 1438-1446 CrossRef PubMed Google Scholar

[336] Fang H, Guo Z, Lin L, Chen J, Sun P, Wu J, Xu C, Tian H, Chen X. J Am Chem Soc, 2018, 140: 11992-12000 CrossRef PubMed Google Scholar

[337] Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Nat Rev Genet, 2014, 15: 541-555 CrossRef PubMed Google Scholar

[338] Guo Z, Chen J, Lin L, Guan X, Sun P, Chen M, Tian H, Chen X. ACS Appl Mater Interfaces, 2017, 9: 15297-15306 CrossRef Google Scholar

[339] He Y, Nie Y, Cheng G, Xie L, Shen Y, Gu Z. Adv Mater, 2014, 26: 1534-1540 CrossRef Google Scholar

[340] Du JZ, Sun TM, Song WJ, Wu J, Wang J. Angew Chem Int Ed, 2010, 49: 3621-3626 CrossRef PubMed Google Scholar

[341] Tian H, Guo Z, Lin L, Jiao Z, Chen J, Gao S, Zhu X, Chen X. J Control Release, 2014, 174: 117-125 CrossRef PubMed Google Scholar

[342] Guan X, Guo Z, Lin L, Chen J, Tian H, Chen X. Nano Lett, 2016, 16: 6823-6831 CrossRef PubMed ADS Google Scholar

[343] Chen J, Guan X, Hu Y, Tian H, Chen X. Top Curr Chem (Z), 2017, 375: 32 CrossRef PubMed Google Scholar

[344] Xiao J, Hu Y, Du J. Sci China Chem, 2018, 61: 569-575 CrossRef Google Scholar

[345] Wang F, Xiao J, Chen S, Sun H, Yang B, Jiang J, Zhou X, Du J. Adv Mater, 2018, 30: 1705674 CrossRef PubMed Google Scholar

[346] Zou Y, Zheng M, Yang W, Meng F, Miyata K, Kim HJ, Kataoka K, Zhong Z. Adv Mater, 2017, 29: 1703285 CrossRef PubMed Google Scholar

[347] Deng L, Xu Y, Sun C, Yun B, Sun Q, Zhao C, Li Z. Sci Bull, 2018, 63: 917-924 CrossRef Google Scholar

[348] Wen J, Yan H, Xia P, Xu Y, Li H, Sun S. Sci China Chem, 2017, 60: 799-805 CrossRef Google Scholar

[349] Huang G, Liu R, Hu Y, Li SH, Wu Y, Qiu Y, Li J, Yang HH. Sci China Chem, 2018, 61: 806-811 CrossRef Google Scholar

[350] Wei J, Yu C, Wang L, Wang J, Zhou Z, Yang H, Yang S. Sci China Chem, 2015, 58: 1537-1543 CrossRef Google Scholar

[351] Hu X, Li F, Noor N, Ling D. Sci Bull, 2017, 62: 589-596 CrossRef Google Scholar

[352] Chen X, Shi S, Wei J, Chen M, Zheng N. Sci Bull, 2017, 62: 579-588 CrossRef Google Scholar

[353] Tong C, Zhang X, Fan J, Li B, Liu B, Daniyal M, Wang W. Sci Bull, 2018, 63: 935-946 CrossRef Google Scholar

[354] Guo M, Zhou G, Liu Z, Liu J, Tang J, Xiao Y, Xu W, Liu Y, Chen C. Sci Bull, 2018, 63: 92-100 CrossRef Google Scholar

[355] Sun M, Li J, Zhang C, Xie Y, Qiao H, Su Z, Oupicky D, Ping Q. Adv Healthc Mater, 2017, 6: 1600693 CrossRef PubMed Google Scholar

[356] Huang JL, Jiang G, Song QX, Gu X, Hu M, Wang XL, Song HH, Chen LP, Lin YY, Jiang D, Chen J, Feng JF, Qiu YM, Jiang JY, Jiang XG, Chen HZ, Gao XL. Nat Commun, 2017, 8: 15144 CrossRef PubMed ADS Google Scholar

[357] Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X. Proc Natl Acad Sci USA, 2014, 111: 14900-14905 CrossRef PubMed ADS Google Scholar

[358] Cheng K, Ding Y, Zhao Y, Ye S, Zhao X, Zhang Y, Ji T, Wu H, Wang B, Anderson GJ, Ren L, Nie G. Nano Lett, 2018, 18: 3250-3258 CrossRef PubMed ADS Google Scholar

[359] Sun B, Luo C, Yu H, Zhang X, Chen Q, Yang W, Wang M, Kan Q, Zhang H, Wang Y, He Z, Sun J. Nano Lett, 2018, 18: 3643-3650 CrossRef PubMed ADS Google Scholar

[360] Jia H, Chen S, Zhuo R, Feng J, Zhang X. Sci China Chem, 2016, 59: 1397-1404 CrossRef Google Scholar

[361] Luo C, Sun J, Liu D, Sun B, Miao L, Musetti S, Li J, Han X, Du Y, Li L, Huang L, He Z. Nano Lett, 2016, 16: 5401-5408 CrossRef PubMed ADS Google Scholar

[362] Wang P, Liu YG, Wang SB. Chin Sci Bull, 2017, 62: 1233-1240 CrossRef Google Scholar

[363] Li Y, Yu H, Sun H, Liu J, Tang Z, Wang D, Yu L, Chen X. Chin J Polym Sci, 2015, 33: 763-771 CrossRef Google Scholar

[364] Zhou YC, Zhou ZX, Shen YQ. Acta Polym Sin, 2017: 359–366. Google Scholar

[365] Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van Kirk EA, Murdoch WJ. Angew Chem Int Ed, 2014, 53: 10949-10955 CrossRef PubMed Google Scholar

[366] Shao S, Zhou Q, Si J, Tang J, Liu X, Wang M, Gao J, Wang K, Xu R, Shen Y. Nat Biomed Eng, 2017, 1: 745-757 CrossRef Google Scholar

[367] Zhang SY, Wu Y, He B, Luo K, Gu ZW. Sci China Chem, 2014, 57: 461-475 CrossRef Google Scholar

[368] Zhang Y, Xiao CS, Li MQ, Ding JX, Yang CG, Zhuang XL, Chen XS. Sci China Chem, 2014, 57: 624-632 CrossRef Google Scholar

[369] Lin B, Su H, Jin R, Li D, Wu C, Jiang X, Xia C, Gong Q, Song B, Ai H. Sci Bull, 2015, 60: 1272-1280 CrossRef Google Scholar

[370] Li N, Zhao L, Qi L, Li Z, Luan Y. Prog Polymer Sci, 2016, 58: 1-26 CrossRef Google Scholar

[371] Zheng CX, Zhao Y, Liu Y. Chin J Polym Sci, 2018, 36: 322-346 CrossRef Google Scholar

[372] Zhang Y, Ren K, Zhang X, Chao Z, Yang Y, Ye D, Dai Z, Liu Y, Ju H. Biomaterials, 2018, 163: 55-66 CrossRef PubMed Google Scholar

[373] Liu Y, Du J, Choi J, Chen KJ, Hou S, Yan M, Lin WY, Chen KS, Ro T, Lipshutz GS, Wu L, Shi L, Lu Y, Tseng HR, Wang H. Angew Chem Int Ed, 2016, 55: 169-173 CrossRef PubMed Google Scholar

[374] Chen W, Zeng K, Liu H, Ouyang J, Wang L, Liu Y, Wang H, Deng L, Liu YN. Adv Funct Mater, 2017, 27: 1605795 CrossRef Google Scholar

[375] Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S, Zhang Z. ACS Nano, 2015, 9: 6918-6933 CrossRef Google Scholar

[376] Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, Liu Z. Adv Mater, 2017, 29: 1701429 CrossRef PubMed Google Scholar

[377] Pei Q, Hu X, Zheng X, Liu S, Li Y, Jing X, Xie Z. ACS Nano, 2018, 12: 1630-1641 CrossRef Google Scholar

[378] Wang X, Valiev RR, Ohulchanskyy TY, ?gren H, Yang C, Chen G. Chem Soc Rev, 2017, 46: 4150-4167 CrossRef PubMed Google Scholar

[379] Rao L, Bu LL, Cai B, Xu JH, Li A, Zhang WF, Sun ZJ, Guo SS, Liu W, Wang TH, Zhao XZ. Adv Mater, 2016, 28: 3460-3466 CrossRef PubMed Google Scholar

[380] Xuan M, Shao J, Dai L, He Q, Li J. Adv Healthc Mater, 2015, 4: 1645-1652 CrossRef PubMed Google Scholar

[381] Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, Sun T, Huang Y, Cheng J, Jiang C. Nano Lett, 2018, 18: 1908-1915 CrossRef PubMed ADS Google Scholar

[382] Wu X, Wu C, Zhang C. Chin J Polym Sci, 2017, 35: 1-24 CrossRef Google Scholar

[383] Zhu X, Li J, Qiu X, Liu Y, Feng W, Li F. Nat Commun, 2018, 9: 2176 CrossRef PubMed ADS Google Scholar

[384] Zhang Y, Tu J, Wang D, Zhu H, Maity SK, Qu X, Bogaert B, Pei H, Zhang H. Adv Mater, 2018, 30: 1703658 CrossRef PubMed Google Scholar

[385] Ma Y, Wang Z, Ma Y, Han Z, Zhang M, Chen H, Gu Y. Angew Chem Int Ed, 2018, 57: 5389-5393 CrossRef PubMed Google Scholar

[386] Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X. Angew Chem Int Ed, 2017, 56: 12528-12532 CrossRef PubMed Google Scholar

[387] Brannon-Peppas L, Blanchette JO. Adv Drug Deliver Rev, 2004, 56: 1649-1659 CrossRef PubMed Google Scholar

[388] Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y. Adv Mater, 2014, 26: 7615-7621 CrossRef PubMed Google Scholar

[389] Mikhail AS, Allen C. J Control Release, 2009, 138: 214-223 CrossRef PubMed Google Scholar

[390] Li SD, Huang L. Mol Pharm, 2008, 5: 496-504 CrossRef PubMed Google Scholar

[391] Jang SH, Wientjes MG, Lu D, Au JLS. Pharm Res, 2003, 20: 1337-1350 CrossRef Google Scholar

[392] Jain RK. Science, 2005, 307: 58-62 CrossRef PubMed ADS Google Scholar

[393] Choi J, Credit K, Henderson K, Deverkadra R, He Z, Wiig H, Vanpelt H, Flessner MF. Clin Cancer Res, 2006, 12: 1906-1912 CrossRef PubMed Google Scholar

[394] Alexandrakis G, Brown EB, Tong RT, McKee TD, Campbell RB, Boucher Y, Jain RK. Nat Med, 2004, 10: 203-207 CrossRef PubMed Google Scholar

[395] Flessner MF, Choi J, Credit K, Deverkadra R, Henderson K. Clin Cancer Res, 2005, 11: 3117-3125 CrossRef PubMed Google Scholar

[396] Boucher Y, Baxter LT, Jain RK. Cancer Res, 1990, 50: 4478–4484. Google Scholar

[397] Heldin CH, Rubin K, Pietras K, Ostman A. Nat Rev Cancer, 2004, 4: 806-813 CrossRef PubMed Google Scholar

[398] Jain RK. Adv Drug Deliver Rev, 2001, 46: 149-168 CrossRef Google Scholar

[399] Gottesman MM. Annu Rev Med, 2002, 53: 615-627 CrossRef Google Scholar

[400] Batrakova EV, Kabanov AV. J Control Release, 2008, 130: 98-106 CrossRef PubMed Google Scholar

[401] Agarwal R, Kaye SB. Nat Rev Cancer, 2003, 3: 502-516 CrossRef PubMed Google Scholar

[402] Wang G, Reed E, Li Q. Oncol Rep, 2004, 12: 955-965 CrossRef Google Scholar

[403] Michael M, Doherty MM. J Clin Oncol, 2005, 23: 205-229 CrossRef PubMed Google Scholar

[404] Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Nat Nanotech, 2011, 6: 815-823 CrossRef PubMed ADS Google Scholar

[405] Sun Q, Zhou Z, Qiu N, Shen Y. 2017, 29: 1606628 Google Scholar

[406] Shen Y, Zhan Y, Tang J, Xu P, Johnson PA, Radosz M, Van Kirk EA, Murdoch WJ. AIChE J, 2008, 54: 2979-2989 CrossRef Google Scholar

[407] Sun X, Wang G, Zhang H, Hu S, Liu X, Tang J, Shen Y. ACS Nano, 2018, 12: 6179-6192 CrossRef Google Scholar

[408] Green J, Tyrrell Z, Radosz M. J Phys Chem C, 2010, 114: 16082-16086 CrossRef Google Scholar

[409] Tyrrell ZL, Shen Y, Radosz M. J Phys Chem C, 2011, 115: 11951-11956 CrossRef Google Scholar

[410] Tyrrell ZL, Shen Y, Radosz M. Macromolecules, 2012, 45: 4809-4817 CrossRef ADS Google Scholar

[411] Yu S, Ding J, He C, Cao Y, Xu W, Chen X. Adv Healthc Mater, 2014, 3: 752-760 CrossRef PubMed Google Scholar

[412] Li X, Figg CA, Wang R, Jiang Y, Lyu Y, Sun H, Liu Y, Wang Y, Teng IT, Hou W, Cai R, Cui C, Li L, Pan X, Sumerlin BS, Tan W. Angew Chem Int Ed, 2018, 57: 11589-11593 CrossRef PubMed Google Scholar

[413] Hu Q, Rijcken CJ, Bansal R, Hennink WE, Storm G, Prakash J. Biomaterials, 2015, 53: 370-378 CrossRef PubMed Google Scholar

[414] Shi C, Guo D, Xiao K, Wang X, Wang L, Luo J. Nat Commun, 2015, 6: 7449 CrossRef PubMed ADS Google Scholar

[415] Tang Z, Gao Y, Li D, Zhou S. Adv Healthc Mater, 2017, 6: 1600919 CrossRef PubMed Google Scholar

[416] Chen G, Wang Y, Wu P, Zhou Y, Yu F, Zhu C, Li Z, Hang Y, Wang K, Li J, Sun M, Oupicky D. ACS Nano, 2018, 12: 6620-6636 CrossRef Google Scholar

[417] Chen G, Wang K, Wang Y, Wu P, Sun M, Oupicky D. Adv Healthc Mater, 2018, 7: 1700978 CrossRef PubMed Google Scholar

[418] Chithrani BD, Ghazani AA, Chan WCW. Nano Lett, 2006, 6: 662-668 CrossRef PubMed ADS Google Scholar

[419] Jin H, Heller DA, Sharma R, Strano MS. ACS Nano, 2009, 3: 149-158 CrossRef PubMed Google Scholar

[420] Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Adv Mater, 2009, 21: 419-424 CrossRef PubMed Google Scholar

[421] Popovi? Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG, Fukumura D, Jain RK, Bawendi MG. Angew Chem Int Ed, 2010, 49: 8649-8652 CrossRef PubMed Google Scholar

[422] Wang J, Mao W, Lock LL, Tang J, Sui M, Sun W, Cui H, Xu D, Shen Y. ACS Nano, 2015, 9: 7195-7206 CrossRef Google Scholar

[423] Maeda H. Adv Enzyme Regul, 2001, 41: 189-207 CrossRef Google Scholar

[424] Jain RK. Cancer Res, 1990, 50: S814–S819. Google Scholar

[425] Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Cancer Res, 1994, 54: 3352–3356. Google Scholar

[426] Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Nano Lett, 2010, 10: 3318-3323 CrossRef PubMed ADS Google Scholar

[427] Holback H, Yeo Y. Pharm Res, 2011, 28: 1819-1830 CrossRef PubMed Google Scholar

[428] Tomida A, Tsuruo T. Anti-Cancer Drug Des, 1999, 14: 169–177. Google Scholar

[429] Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, Chen YY, MacMillan P, Chan WCW. ACS Nano, 2018, 12: 8423-8435 CrossRef Google Scholar

[430] Wang C. Sci Bull, 2015: 1–2. Google Scholar

[431] Dai L, Li K, Li M, Zhao X, Luo Z, Lu L, Luo Y, Cai K. Adv Funct Mater, 2018, 28: 1707249 CrossRef Google Scholar

[432] Guo X, Wei X, Jing Y, Zhou S. Adv Mater, 2015, 27: 6450-6456 CrossRef PubMed Google Scholar

[433] Chen J, Ding J, Wang Y, Cheng J, Ji S, Zhuang X, Chen X. Adv Mater, 2017, 29: 1701170 CrossRef PubMed Google Scholar

[434] Ju C, Mo R, Xue J, Zhang L, Zhao Z, Xue L, Ping Q, Zhang C. Angew Chem Int Ed, 2014, 53: 6253-6258 CrossRef PubMed Google Scholar

[435] Xue X, Huang Y, Bo R, Jia B, Wu H, Yuan Y, Wang Z, Ma Z, Jing D, Xu X, Yu W, Lin TY, Li Y. Nat Commun, 2018, 9: 3653 CrossRef PubMed ADS Google Scholar

[436] Jiang W, Huang Y, An Y, Kim BYS. ACS Nano, 2015, 9: 8689-8696 CrossRef Google Scholar

[437] Wang JL, Sun JS, Shi XH. Chin Sci Bull (Chin Ver), 2015, 60: 1976-1986 CrossRef Google Scholar

[438] Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. Adv Healthc Mater, 2015, 4: 844-855 CrossRef PubMed Google Scholar

[439] Ding L, Zhu X, Wang Y, Shi B, Ling X, Chen H, Nan W, Barrett A, Guo Z, Tao W, Wu J, Shi X. Nano Lett, 2017, 17: 6790-6801 CrossRef PubMed ADS Google Scholar

[440] Minchinton AI, Tannock IF. Nat Rev Cancer, 2006, 6: 583-592 CrossRef PubMed Google Scholar

[441] Jin E, Zhang B, Sun X, Zhou Z, Ma X, Sun Q, Tang J, Shen Y, Van Kirk E, Murdoch WJ, Radosz M. J Am Chem Soc, 2013, 135: 933-940 CrossRef PubMed Google Scholar

[442] Jing Y, Xiong X, Ming Y, Zhao J, Guo X, Yang G, Zhou S. Adv Healthc Mater, 2018, 7: 1700974 CrossRef PubMed Google Scholar

[443] Quail DF, Joyce JA. Nat Med, 2013, 19: 1423-1437 CrossRef PubMed Google Scholar

[444] Song X, Feng L, Liang C, Yang K, Liu Z. Nano Lett, 2016, 16: 6145-6153 CrossRef PubMed ADS Google Scholar

[445] Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z. Adv Mater, 2016, 28: 7129-7136 CrossRef PubMed Google Scholar

[446] Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. Adv Mater, 2018, 30: 1706090 CrossRef PubMed Google Scholar

[447] Zhang C, Ni D, Liu Y, Yao H, Bu W, Shi J. Nat Nanotech, 2017, 12: 378-386 CrossRef PubMed ADS Google Scholar

[448] Huo M, Wang L, Chen Y, Shi J. Nat Commun, 2017, 8: 357 CrossRef PubMed ADS Google Scholar

[449] Han X, Li Y, Xu Y, Zhao X, Zhang Y, Yang X, Wang Y, Zhao R, Anderson GJ, Zhao Y, Nie G. Nat Commun, 2018, 9: 3390 CrossRef PubMed ADS Google Scholar

[450] Zhu Q, Chen X, Xu X, Zhang Y, Zhang C, Mo R. Adv Funct Mater, 2018, 28: 1707371 CrossRef Google Scholar

[451] Gros A, Syvannarath V, Lamrani L, Ollivier V, Loyau S, Goerge T, Nieswandt B, Jandrot-Perrus M, Ho-Tin-Noé B. Blood, 2015, 126: 1017-1026 CrossRef PubMed Google Scholar

[452] Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, Ding Y, Zhao X, Zhao R, Li F, Yang X, Liu S, Liu Z, Lai J, Whittaker AK, Anderson GJ, Wei J, Nie G. Nat Biomed Eng, 2017, 1: 667-679 CrossRef Google Scholar

[453] Li L, Sun W, Zhong J, Yang Q, Zhu X, Zhou Z, Zhang Z, Huang Y. Adv Funct Mater, 2015, 25: 4101-4113 CrossRef Google Scholar

[454] Lu G, Li F, Zhang F, Huang LL, Zhang L, Lv Y, Wei W, Xie HY. Adv Funct Mater, 2018, 28: 1707596 CrossRef Google Scholar

[455] He B, Tan T, Wang H, Hu H, Wang Z, Wang J, Li J, Sun K, Zhang Z, Li Y. Adv Funct Mater, 2018, 28: 1705622 CrossRef Google Scholar

[456] Dahmani FZ, Xiao Y, Zhang J, Yu Y, Zhou J, Yao J. Adv Healthc Mater, 2016, 5: 1447-1461 CrossRef PubMed Google Scholar

[457] Shen Y, Ma X, Zhang B, Zhou Z, Sun Q, Jin E, Sui M, Tang J, Wang J, Fan M. Chem Eur J, 2011, 17: 5319-5326 CrossRef PubMed Google Scholar

[458] Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Annu Rev Chem Biomol Eng, 2011, 2: 281-298 CrossRef PubMed Google Scholar

[459] Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Nat Rev Mater, 2016, 1: 16014 CrossRef ADS Google Scholar

[460] Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Cancer Res, 2000, 60: 4324–4327. Google Scholar

[461] Matsumoto Y, Nichols JW, Toh K, Nomoto T, Cabral H, Miura Y, Christie RJ, Yamada N, Ogura T, Kano MR, Matsumura Y, Nishiyama N, Yamasoba T, Bae YH, Kataoka K. Nat Nanotech, 2016, 11: 533-538 CrossRef PubMed ADS Google Scholar

[462] Stirland DL, Matsumoto Y, Toh K, Kataoka K, Bae YH. J Control Release, 2016, 227: 38-44 CrossRef PubMed Google Scholar

[463] Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF. Clin Cancer Res, 2005, 11: 8782-8788 CrossRef PubMed Google Scholar

[464] Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM. Cell, 2009, 139: 891-906 CrossRef PubMed Google Scholar

[465] Jain RK, Stylianopoulos T. Nat Rev Clin Oncol, 2010, 7: 653-664 CrossRef PubMed Google Scholar

[466] Zhou Z, Song J, Nie L, Chen X. Chem Soc Rev, 2016, 45: 6597-6626 CrossRef PubMed Google Scholar

[467] Cherukuri P, Glazer ES, Curley SA. Adv Drug Deliver Rev, 2010, 62: 339-345 CrossRef PubMed Google Scholar

[468] Luo GF, Chen WH, Hong S, Cheng Q, Qiu WX, Zhang XZ. Adv Funct Mater, 2017, 27: 1702122 CrossRef Google Scholar

[469] Chen WH, Luo GF, Qiu WX, Lei Q, Liu LH, Wang SB, Zhang XZ. Biomaterials, 2017, 117: 54-65 CrossRef PubMed Google Scholar

[470] Dolmans DEJGJ, Fukumura D, Jain RK. Nat Rev Cancer, 2003, 3: 380-387 CrossRef PubMed Google Scholar

[471] Lucky SS, Soo KC, Zhang Y. Chem Rev, 2015, 115: 1990-2042 CrossRef PubMed Google Scholar

[472] Li X, Lee S, Yoon J. Chem Soc Rev, 2018, 47: 1174-1188 CrossRef PubMed Google Scholar

[473] Vannostrum C. Adv Drug Deliver Rev, 2004, 56: 9-16 CrossRef Google Scholar

[474] Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Adv Drug Deliver Rev, 2009, 61: 327-338 CrossRef Google Scholar

[475] Chen JX, Wang HY, Li C, Han K, Zhang XZ, Zhuo RX. Biomaterials, 2011, 32: 1678-1684 CrossRef PubMed Google Scholar

[476] Jeong H, Huh MS, Lee SJ, Koo H, Kwon IC, Jeong SY, Kim K. Theranostics, 2011, 1: 230-239 CrossRef Google Scholar

[477] Abbas M, Zou Q, Li S, Yan X. Adv Mater, 2017, 29: 1605021 CrossRef PubMed Google Scholar

[478] Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. Nat Med, 2012, 18: 1580-1585 CrossRef PubMed Google Scholar

[479] Zeng JY, Zou MZ, Zhang M, Wang XS, Zeng X, Cong H, Zhang XZ. ACS Nano, 2018, 12: 4630-4640 CrossRef Google Scholar

[480] Pan L, Liu J, Shi J. Adv Funct Mater, 2014, 24: 7318-7327 CrossRef Google Scholar

[481] Shi L, Hernandez B, Selke M. J Am Chem Soc, 2006, 128: 6278-6279 CrossRef PubMed Google Scholar

[482] Jang B, Park JY, Tung CH, Kim IH, Choi Y. ACS Nano, 2011, 5: 1086-1094 CrossRef PubMed Google Scholar

[483] Li F, Du Y, Liu J, Sun H, Wang J, Li R, Kim D, Hyeon T, Ling D. Adv Mater, 2018, 30: 1802808 CrossRef PubMed Google Scholar

[484] Wang C, Tao H, Cheng L, Liu Z. Biomaterials, 2011, 32: 6145-6154 CrossRef PubMed Google Scholar

[485] Zhang C, Chen WH, Liu LH, Qiu WX, Yu WY, Zhang XZ. Adv Funct Mater, 2017, 27: 1700626 CrossRef Google Scholar

[486] Huang YY, Sharma SK, Yin R, Agrawal T, Chiang LY, Hamblin MR. J Biomed Nanotechnol, 2014, 10: 1918-1936 CrossRef PubMed Google Scholar

[487] Zhang C, Zhao K, Bu W, Ni D, Liu Y, Feng J, Shi J. Angew Chem Int Ed, 2015, 54: 1770-1774 CrossRef PubMed Google Scholar

[488] Yu Z, Pan W, Li N, Tang B. Chem Sci, 2016, 7: 4237-4244 CrossRef PubMed Google Scholar

[489] Zhang Z, Wang J, Chen C. Adv Mater, 2013, 25: 3869-3880 CrossRef PubMed Google Scholar

[490] Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Martín Rodríguez E, García Solé J. Nanoscale, 2014, 6: 9494-9530 CrossRef PubMed ADS Google Scholar

[491] Chen WH, Luo GF, Zhang XZ. Adv Mater, 2018, 113: 1802725 CrossRef PubMed Google Scholar

[492] Zhao P, Zheng M, Yue C, Luo Z, Gong P, Gao G, Sheng Z, Zheng C, Cai L. Biomaterials, 2014, 35: 6037-6046 CrossRef PubMed Google Scholar

[493] Song X, Chen Q, Liu Z. Nano Res, 2014, 8: 340-354 CrossRef Google Scholar

[494] Zhou J, Lu Z, Zhu X, Wang X, Liao Y, Ma Z, Li F. Biomaterials, 2013, 34: 9584-9592 CrossRef PubMed Google Scholar

[495] Zha Z, Yue X, Ren Q, Dai Z. Adv Mater, 2013, 25: 777-782 CrossRef PubMed Google Scholar

[496] MacDonald TD, Liu TW, Zheng G. Angew Chem Int Ed, 2014, 53: 6956-6959 CrossRef PubMed Google Scholar

[497] Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WCW, Cao W, Wang LV, Zheng G. Nat Mater, 2011, 10: 324-332 CrossRef PubMed ADS Google Scholar

[498] Wang X, Zhang J, Wang Y, Wang C, Xiao J, Zhang Q, Cheng Y. Biomaterials, 2016, 81: 114-124 CrossRef PubMed Google Scholar

[499] Moon HK, Lee SH, Choi HC. ACS Nano, 2009, 3: 3707-3713 CrossRef PubMed Google Scholar

[500] Chen WH, Yang CX, Qiu WX, Luo GF, Jia HZ, Lei Q, Wang XY, Liu G, Zhuo RX, Zhang XZ. Adv Healthc Mater, 2015, 4: 2247-2259 CrossRef PubMed Google Scholar

[501] Wang XQ, Gao F, Zhang XZ. Angew Chem Int Ed, 2017, 56: 9029-9033 CrossRef PubMed Google Scholar

[502] Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat Nanotech, 2010, 6: 28-32 CrossRef PubMed ADS Google Scholar

[503] Dumas A, Couvreur P. Chem Sci, 2015, 6: 2153-2157 CrossRef PubMed Google Scholar

[504] Song G, Liang C, Gong H, Li M, Zheng X, Cheng L, Yang K, Jiang X, Liu Z. Adv Mater, 2015, 27: 6110-6117 CrossRef PubMed Google Scholar

[505] Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, Korgel BA. Nano Lett, 2011, 11: 2560-2566 CrossRef PubMed ADS Google Scholar

[506] Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J. Adv Mater, 2011, 23: 3542-3547 CrossRef PubMed Google Scholar

[507] Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, Tian M, Liang D, Li C. J Am Chem Soc, 2010, 132: 15351-15358 CrossRef PubMed Google Scholar

[508] Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, Wang C, Wang X, Liu G, Xing H, Bu W, Sun B, Liu Z. Adv Mater, 2014, 26: 1886-1893 CrossRef PubMed Google Scholar

[509] Zhang C, Yong Y, Song L, Dong X, Zhang X, Liu X, Gu Z, Zhao Y, Hu Z. Adv Healthc Mater, 2016, 5: 2776-2787 CrossRef PubMed Google Scholar

[510] Chen Z, Wang Q, Wang H, Zhang L, Song G, Song L, Hu J, Wang H, Liu J, Zhu M, Zhao D. Adv Mater, 2013, 25: 2095-2100 CrossRef PubMed Google Scholar

[511] Deng K, Hou Z, Deng X, Yang P, Li C, Lin J. Adv Funct Mater, 2015, 25: 7280-7290 CrossRef Google Scholar

[512] Fu G, Liu W, Feng S, Yue X. Chem Commun, 2012, 48: 11567 CrossRef PubMed Google Scholar

[513] Cheng L, Gong H, Zhu W, Liu J, Wang X, Liu G, Liu Z. Biomaterials, 2014, 35: 9844-9852 CrossRef PubMed Google Scholar

[514] Sun C, Wen L, Zeng J, Wang Y, Sun Q, Deng L, Zhao C, Li Z. Biomaterials, 2016, 91: 81-89 CrossRef PubMed Google Scholar

[515] Wang S, Tian Y, Tian W, Sun J, Zhao S, Liu Y, Wang C, Tang Y, Ma X, Teng Z, Lu G. ACS Nano, 2016, 10: 8578-8590 CrossRef Google Scholar

[516] Jego G, Hazoumé A, Seigneuric R, Garrido C. Cancer Lett, 2013, 332: 275-285 CrossRef PubMed Google Scholar

[517] Miyagawa T, Saito H, Minamiya Y, Mitobe K, Takashima S, Takahashi N, Ito A, Imai K, Motoyama S, Ogawa J. Int J Clin Oncol, 2013, 19: 722-730 CrossRef PubMed Google Scholar

[518] Wang BK, Yu XF, Wang JH, Li ZB, Li PH, Wang H, Song L, Chu PK, Li C. Biomaterials, 2016, 78: 27-39 CrossRef PubMed Google Scholar

[519] Guo W, Guo C, Zheng N, Sun T, Liu S. Adv Mater, 2017, 29: 1604157 CrossRef PubMed Google Scholar

[520] Zhang K, Meng X, Cao Y, Yang Z, Dong H, Zhang Y, Lu H, Shi Z, Zhang X. Adv Funct Mater, 2018, 28: 1804634 CrossRef Google Scholar

[521] Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan W. ACS Nano, 2012, 6: 5070-5077 CrossRef PubMed Google Scholar

[522] Jin CS, Lovell JF, Chen J, Zheng G. ACS Nano, 2013, 7: 2541-2550 CrossRef PubMed Google Scholar

[523] Luo GF, Chen WH, Lei Q, Qiu WX, Liu YX, Cheng YJ, Zhang XZ. Adv Funct Mater, 2016, 26: 4339-4350 CrossRef Google Scholar

[524] Vijayaraghavan P, Liu CH, Vankayala R, Chiang CS, Hwang KC. Adv Mater, 2014, 26: 6689-6695 CrossRef PubMed Google Scholar

[525] Sahu A, Choi WI, Lee JH, Tae G. Biomaterials, 2013, 34: 6239-6248 CrossRef PubMed Google Scholar

[526] Tian B, Wang C, Zhang S, Feng L, Liu Z. ACS Nano, 2011, 5: 7000-7009 CrossRef PubMed Google Scholar

[527] Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, Chen X, Nie Z. ACS Nano, 2013, 7: 5320-5329 CrossRef PubMed Google Scholar

[528] Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Chem Rev, 2014, 115: 327-394 CrossRef PubMed Google Scholar

[529] Kim J, Piao Y, Hyeon T. Chem Soc Rev, 2009, 38: 372-390 CrossRef PubMed Google Scholar

[530] Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Chem Soc Rev, 2012, 41: 2656-2672 CrossRef PubMed Google Scholar

[531] Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. Angew Chem Int Ed, 2018, 57: 11384-11388 CrossRef PubMed Google Scholar

[532] Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L. ACS Nano, 2013, 7: 2056-2067 CrossRef PubMed Google Scholar

[533] Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kope?ek J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, M?hwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sj?qvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. ACS Nano, 2017, 11: 2313-2381 CrossRef Google Scholar

[534] Wilson BC, Patterson MS. Phys Med Biol, 2008, 53: R61-R109 CrossRef PubMed ADS Google Scholar

[535] Zheng DW, Chen Y, Li ZH, Xu L, Li CX, Li B, Fan JX, Cheng SX, Zhang XZ. Nat Commun, 2018, 9: 1680 CrossRef PubMed ADS Google Scholar

[536] Lan G, Ni K, Lin W. Coordin Chem Rev, 2019, 379: 65-81 CrossRef Google Scholar

[537] Zheng DW, Li B, Li CX, Xu L, Fan JX, Lei Q, Zhang XZ. Adv Mater, 2017, 29: 1703822 CrossRef PubMed Google Scholar

[538] Lim WQ, Phua SZF, Xu HV, Sreejith S, Zhao Y. Nanoscale, 2016, 8: 12510-12519 CrossRef PubMed ADS Google Scholar

[539] Zhao L, Peng J, Huang Q, Li C, Chen M, Sun Y, Lin Q, Zhu L, Li F. Adv Funct Mater, 2014, 24: 363-371 CrossRef Google Scholar

[540] Zhou L, Chen Z, Dong K, Yin M, Ren J, Qu X. Adv Mater, 2014, 26: 2424-2430 CrossRef PubMed Google Scholar

[541] Min Y, Li J, Liu F, Yeow EKL, Xing B. Angew Chem Int Ed, 2014, 53: 1012-1016 CrossRef PubMed Google Scholar

[542] Chen Q, Wang C, Cheng L, He W, Cheng Z, Liu Z. Biomaterials, 2014, 35: 2915-2923 CrossRef PubMed Google Scholar

[543] Li X, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao D. J Am Chem Soc, 2014, 136: 15086-15092 CrossRef PubMed Google Scholar

[544] Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. J Am Chem Soc, 2017, 139: 4584-4610 CrossRef PubMed Google Scholar

[545] Zhang X, Tian G, Yin W, Wang L, Zheng X, Yan L, Li J, Su H, Chen C, Gu Z, Zhao Y. Adv Funct Mater, 2015, 25: 3049-3056 CrossRef Google Scholar

[546] Zuo J, Tu L, Li Q, Feng Y, Que I, Zhang Y, Liu X, Xue B, Cruz LJ, Chang Y, Zhang H, Kong X. ACS Nano, 2018, 12: 3217-3225 CrossRef Google Scholar

[547] Xu J, Gulzar A, Liu Y, Bi H, Gai S, Liu B, Yang D, He F, Yang P. Small, 2017, 13: 1701841 CrossRef PubMed Google Scholar

[548] Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F. Adv Mater, 2016, 28: 9341-9348 CrossRef PubMed Google Scholar

[549] Zhao H, Hu W, Ma H, Jiang R, Tang Y, Ji Y, Lu X, Hou B, Deng W, Huang W, Fan Q. Adv Funct Mater, 2017, 27: 1702592 CrossRef Google Scholar

[550] Zhang Y, Yu Z, Li J, Ao Y, Xue J, Zeng Z, Yang X, Tan TTY. ACS Nano, 2017, 11: 2846-2857 CrossRef Google Scholar

[551] Zhang X, Guo Z, Liu J, Tian G, Chen K, Yu S, Gu Z. Sci Bull, 2017, 62: 985-996 CrossRef Google Scholar

[552] Huang Y, Xiao Q, Hu H, Zhang K, Feng Y, Li F, Wang J, Ding X, Jiang J, Li Y, Shi L, Lin H. Small, 2016, 12: 4200-4210 CrossRef PubMed Google Scholar

[553] Overchuk M, Zheng G. Biomaterials, 2018, 156: 217-237 CrossRef PubMed Google Scholar

[554] Ai F, Wang N, Zhang X, Sun T, Zhu Q, Kong W, Wang F, Zhu G. Nanoscale, 2018, 10: 4432-4441 CrossRef PubMed Google Scholar

[555] Li C, Zuo J, Zhang L, Chang Y, Zhang Y, Tu L, Liu X, Xue B, Li Q, Zhao H, Zhang H, Kong X. Sci Rep, 2016, 6: 38617 CrossRef PubMed ADS Google Scholar

[556] Liu B, Chen Y, Li C, He F, Hou Z, Huang S, Zhu H, Chen X, Lin J. Adv Funct Mater, 2015, 25: 4717-4729 CrossRef Google Scholar

[557] Tan L, Huang R, Li X, Liu S, Shen YM. Acta Biomater, 2017, 57: 498-510 CrossRef PubMed Google Scholar

[558] Wang Y, Song S, Liu J, Liu D, Zhang H. Angew Chem Int Ed, 2015, 54: 536-540 CrossRef PubMed Google Scholar

[559] Wei R, Xi W, Wang H, Liu J, Mayr T, Shi L, Sun L. Nanoscale, 2017, 9: 12885-12896 CrossRef PubMed Google Scholar

[560] Xu J, Kuang Y, Lv R, Yang P, Li C, Bi H, Liu B, Yang D, Dai Y, Gai S, He F, Xing B, Lin J. Biomaterials, 2017, 130: 42-55 CrossRef PubMed Google Scholar

[561] Zhao J, Yang H, Li J, Wang Y, Wang X. Sci Rep, 2017, 7: 18014 CrossRef PubMed ADS Google Scholar

[562] Wang S, Yang W, Cui J, Li X, Dou Y, Su L, Chang J, Wang H, Li X, Zhang B. Biomater Sci, 2016, 4: 338-345 CrossRef PubMed Google Scholar

[563] Liu X, Fan Z, Zhang L, Jin Z, Yan D, Zhang Y, Li X, Tu L, Xue B, Chang Y, Zhang H, Kong X. Biomaterials, 2017, 144: 73-83 CrossRef PubMed Google Scholar

[564] Wang S, Zhang L, Dong C, Su L, Wang H, Chang J. Chem Commun, 2015, 51: 406-408 CrossRef PubMed Google Scholar

[565] Lv R, Yang P, He F, Gai S, Yang G, Dai Y, Hou Z, Lin J. Biomaterials, 2015, 63: 115-127 CrossRef PubMed Google Scholar

[566] Cai H, Shen T, Kirillov AM, Zhang Y, Shan C, Li X, Liu W, Tang Y. Inorg Chem, 2017, 56: 5295-5304 CrossRef PubMed Google Scholar

[567] Li H, Wei R, Yan GH, Sun J, Li C, Wang H, Shi L, Capobianco JA, Sun L. ACS Appl Mater Interfaces, 2018, 10: 4910-4920 CrossRef Google Scholar

[568] Han R, Yi H, Shi J, Liu Z, Wang H, Hou Y, Wang Y. Phys Chem Chem Phys, 2016, 18: 25497-25503 CrossRef PubMed ADS Google Scholar

[569] Bi H, Dai Y, Yang P, Xu J, Yang D, Gai S, He F, Liu B, Zhong C, An G, Lin J. Small, 2018, 14: 1703809 CrossRef PubMed Google Scholar

[570] Zhu K, Liu G, Hu J, Liu S. Biomacromolecules, 2017, 18: 2571-2582 CrossRef PubMed Google Scholar

[571] Xu J, Han W, Cheng Z, Yang P, Bi H, Yang D, Niu N, He F, Gai S, Lin J. Chem Sci, 2018, 9: 3233-3247 CrossRef PubMed Google Scholar

[572] Fan W, Bu W, Shen B, He Q, Cui Z, Liu Y, Zheng X, Zhao K, Shi J. Adv Mater, 2015, 27: 4155-4161 CrossRef PubMed Google Scholar

[573] Yao C, Wang W, Wang P, Zhao M, Li X, Zhang F. Adv Mater, 2018, 30: 1704833 CrossRef PubMed Google Scholar

[574] Xu J, He F, Cheng Z, Lv R, Dai Y, Gulzar A, Liu B, Bi H, Yang D, Gai S, Yang P, Lin J. Chem Mater, 2017, 29: 7615-7628 CrossRef Google Scholar

[575] Liu Y, Liu Y, Bu W, Cheng C, Zuo C, Xiao Q, Sun Y, Ni D, Zhang C, Liu J, Shi J. Angew Chem Int Ed, 2015, 54: 8105-8109 CrossRef PubMed Google Scholar

[576] Liu Y, Liu Y, Bu W, Xiao Q, Sun Y, Zhao K, Fan W, Liu J, Shi J. Biomaterials, 2015, 49: 1-8 CrossRef PubMed Google Scholar

[577] Wang P, Li X, Yao C, Wang W, Zhao M, El-Toni AM, Zhang F. Biomaterials, 2017, 125: 90-100 CrossRef PubMed Google Scholar

[578] Lai J, Shah BP, Zhang Y, Yang L, Lee KB. ACS Nano, 2015, 9: 5234-5245 CrossRef Google Scholar

[579] Khaydukov EV, Mironova KE, Semchishen VA, Generalova AN, Nechaev AV, Khochenkov DA, Stepanova EV, Lebedev OI, Zvyagin AV, Deyev SM, Panchenko VY. Sci Rep, 2016, 6: 35103 CrossRef PubMed ADS Google Scholar

[580] Hu P, Wang R, Zhou L, Chen L, Wu Q, Han MY, El-Toni AM, Zhao D, Zhang F. Anal Chem, 2017, 89: 3492-3500 CrossRef PubMed Google Scholar

[581] Zhou J, Yao H, Meng L, Sun C, Ye W, Du Q. ChemMedChem, 2017, 12: 1191-1200 CrossRef PubMed Google Scholar

[582] Zhang L, Zeng L, Pan Y, Luo S, Ren W, Gong A, Ma X, Liang H, Lu G, Wu A. Biomaterials, 2015, 44: 82-90 CrossRef PubMed Google Scholar

[583] Zeng L, Luo L, Pan Y, Luo S, Lu G, Wu A. Nanoscale, 2015, 7: 8946-8954 CrossRef PubMed ADS Google Scholar

[584] Wu Q, Lin Y, Wo F, Yuan Y, Ouyang Q, Song J, Qu J, Yong KT. Small, 2017, 13: 1701129 CrossRef PubMed Google Scholar

[585] Wang X, Meng G, Zhang S, Liu X. Sci Rep, 2016, 6: 29911 CrossRef PubMed ADS Google Scholar

[586] Tong R, Lin H, Chen Y, An N, Wang G, Pan X, Qu F. Mater Sci Eng-C, 2017, 78: 998-1005 CrossRef PubMed Google Scholar

[587] Rao L, Meng QF, Bu LL, Cai B, Huang Q, Sun ZJ, Zhang WF, Li A, Guo SS, Liu W, Wang TH, Zhao XZ. ACS Appl Mater Interfaces, 2017, 9: 2159-2168 CrossRef Google Scholar

[588] Liu C, Qi Y, Qiao R, Hou Y, Chan K, Li Z, Huang J, Jing L, Du J, Gao M. Nanoscale, 2016, 8: 12579-12587 CrossRef PubMed ADS Google Scholar

[589] Han J, Xia H, Wu Y, Kong SN, Deivasigamani A, Xu R, Hui KM, Kang Y. Nanoscale, 2016, 8: 7861-7865 CrossRef PubMed ADS Google Scholar

[590] Guan M, Dong H, Ge J, Chen D, Sun L, Li S, Wang C, Yan C, Wang P, Shu C. NPG Asia Mater, 2015, 7: e205 CrossRef Google Scholar

[591] Gu B, Pliss A, Kuzmin AN, Baev A, Ohulchanskyy TY, Damasco JA, Yong KT, Wen S, Prasad PN. Biomaterials, 2016, 104: 78-86 CrossRef PubMed Google Scholar

[592] Gnanasammandhan MK, Idris NM, Bansal A, Huang K, Zhang Y. Nat Protoc, 2016, 11: 688-713 CrossRef PubMed Google Scholar

[593] Chowdhuri AR, Laha D, Chandra S, Karmakar P, Sahu SK. Chem Eng J, 2017, 319: 200-211 CrossRef Google Scholar

[594] Chen CW, Chan YC, Hsiao M, Liu RS. ACS Appl Mater Interfaces, 2016, 8: 32108-32119 CrossRef Google Scholar

[595] Wong PT, Chen D, Tang S, Yanik S, Payne M, Mukherjee J, Coulter A, Tang K, Tao K, Sun K, Baker Jr. JR, Choi SK. Small, 2015, 11: 6078-6090 CrossRef PubMed Google Scholar

[596] Chowdhuri AR, Laha D, Pal S, Karmakar P, Sahu SK. Dalton Trans, 2016, 45: 18120-18132 CrossRef PubMed Google Scholar

[597] Yang D, Yang G, Wang X, Lv R, Gai S, He F, Gulzar A, Yang P. Nanoscale, 2015, 7: 12180-12191 CrossRef PubMed ADS Google Scholar

[598] Luo CH, Huang CT, Su CH, Yeh CS. Nano Lett, 2016, 16: 3493-3499 CrossRef PubMed ADS Google Scholar

[599] Du B, Cao X, Zhao F, Su X, Wang Y, Yan X, Jia S, Zhou J, Yao H. J Mater Chem B, 2016, 4: 2038-2050 CrossRef Google Scholar

[600] Zhou L, Chen E, Jin W, Wang Y, Zhou J, Wei S. Dalton Trans, 2016, 45: 15170-15179 CrossRef PubMed Google Scholar

[601] Su X, Zhao F, Wang Y, Yan X, Jia S, Du B. Nanomed-Nanotechnol Biol Med, 2017, 13: 1761-1772 CrossRef PubMed Google Scholar

[602] Wang D, Zhu L, Pu Y, Wang JX, Chen JF, Dai L. Nanoscale, 2017, 9: 11214-11221 CrossRef PubMed Google Scholar

[603] Chen G, Jaskula-Sztul R, Esquibel CR, Lou I, Zheng Q, Dammalapati A, Harrison A, Eliceiri KW, Tang W, Chen H, Gong S. Adv Funct Mater, 2017, 27: 1604671 CrossRef PubMed Google Scholar

[604] Lucky SS, Idris NM, Huang K, Kim J, Li Z, Thong PSP, Xu R, Soo KC, Zhang Y. Theranostics, 2016, 6: 1844-1865 CrossRef PubMed Google Scholar

[605] Zeng L, Pan Y, Zou R, Zhang J, Tian Y, Teng Z, Wang S, Ren W, Xiao X, Zhang J, Zhang L, Li A, Lu G, Wu A. Biomaterials, 2016, 103: 116-127 CrossRef PubMed Google Scholar

[606] Tsai YC, Vijayaraghavan P, Chiang WH, Chen HH, Liu TI, Shen MY, Omoto A, Kamimura M, Soga K, Chiu HC. Theranostics, 2018, 8: 1435-1448 CrossRef PubMed Google Scholar

[607] Liu Y, Li L, Guo Q, Wang L, Liu D, Wei Z, Zhou J. Theranostics, 2016, 6: 1491-1505 CrossRef PubMed Google Scholar

[608] Lv R, Yang D, Yang P, Xu J, He F, Gai S, Li C, Dai Y, Yang G, Lin J. Chem Mater, 2016, 28: 4724-4734 CrossRef Google Scholar

[609] Zhou A, Wei Y, Chen Q, Xing D. J Biomed Nanotechnol, 2015, 11: 2003-2010 CrossRef Google Scholar

[610] Gao W, Wang Z, Lv L, Yin D, Chen D, Han Z, Ma Y, Zhang M, Yang M, Gu Y. Theranostics, 2016, 6: 1131-1144 CrossRef PubMed Google Scholar

[611] Liu Q, Wang W, Zhan C, Yang T, Kohane DS. Nano Lett, 2016, 16: 4516-4520 CrossRef PubMed ADS Google Scholar

[612] Sharipov M, Tawfik SM, Gerelkhuu Z, Huy BT, Lee YI. Sci Rep, 2017, 7: 16073 CrossRef PubMed ADS Google Scholar

[613] Yu Z, Ge Y, Sun Q, Pan W, Wan X, Li N, Tang B. Chem Sci, 2018, 9: 3563-3569 CrossRef PubMed Google Scholar

[614] Liu Y, Zhang J, Zuo C, Zhang Z, Ni D, Zhang C, Wang J, Zhang H, Yao Z, Bu W. Nano Res, 2016, 9: 3257-3266 CrossRef Google Scholar

[615] Chang Y, Li X, Zhang L, Xia L, Liu X, Li C, Zhang Y, Tu L, Xue B, Zhao H, Zhang H, Kong X. Sci Rep, 2017, 7: 45633 CrossRef PubMed ADS Google Scholar

[616] Hu P, Wu T, Fan W, Chen L, Liu Y, Ni D, Bu W, Shi J. Biomaterials, 2017, 141: 86-95 CrossRef PubMed Google Scholar

[617] Zhang D, Wen L, Huang R, Wang H, Hu X, Xing D. Biomaterials, 2018, 153: 14-26 CrossRef PubMed Google Scholar

[618] Guan Y, Lu H, Li W, Zheng Y, Jiang Z, Zou J, Gao H. ACS Appl Mater Interfaces, 2017, 9: 26731-26739 CrossRef Google Scholar

[619] Yu Z, Sun Q, Pan W, Li N, Tang B. ACS Nano, 2015, 9: 11064-11074 CrossRef Google Scholar

[620] Zhu X, Wang H, Zheng L, Zhong Z, Li X, Zhao J, Kou J, Jiang Y, Zheng X, Liu Z, Li H, Cao W, Tian Y, Wang Y, Yang L. Int J Nanomed, 2015, 10: 3719-3736 CrossRef PubMed Google Scholar

[621] Chen D, Tao R, Tao K, Chen B, Choi SK, Tian Q, Xu Y, Zhou G, Sun K. Small, 2017, 13: 1602053 CrossRef PubMed Google Scholar

[622] Fan W, Shen B, Bu W, Zheng X, He Q, Cui Z, Zhao K, Zhang S, Shi J. Chem Sci, 2015, 6: 1747-1753 CrossRef PubMed Google Scholar

[623] Liu Y, Xu Y, Geng X, Huo Y, Chen D, Sun K, Zhou G, Chen B, Tao K. Small, 2018, 14: 1800293 CrossRef PubMed Google Scholar

[624] Ribas A, Wolchok JD. Science, 2018, 359: 1350-1355 CrossRef PubMed ADS Google Scholar

[625] Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. Nat Med, 2018, 24: 731-738 CrossRef PubMed Google Scholar

[626] Postow MA, Sidlow R, Hellmann MD. N Engl J Med, 2018, 378: 158-168 CrossRef PubMed Google Scholar

[627] Fan Q, Chen Z, Wang C, Liu Z. Adv Funct Mater, 2018, 28: 1802540 CrossRef Google Scholar

[628] Wang C, Ye Y, Hu Q, Bellotti A, Gu Z. Adv Mater, 2017, 29: 1606036 CrossRef PubMed Google Scholar

[629] Wang H, Mooney DJ. Nat Mater, 2018, 17: 761-772 CrossRef PubMed ADS Google Scholar

[630] Gosselin EA, Eppler HB, Bromberg JS, Jewell CM. Nat Mater, 2018, 17: 484-498 CrossRef PubMed ADS Google Scholar

[631] Xu J, Xu L, Wang C, Yang R, Zhuang Q, Han X, Dong Z, Zhu W, Peng R, Liu Z. ACS Nano, 2017, 11: 4463-4474 CrossRef Google Scholar

[632] Yang G, Xu L, Xu J, Zhang R, Song G, Chao Y, Feng L, Han F, Dong Z, Li B, Liu Z. Nano Lett, 2018, 18: 2475-2484 CrossRef PubMed ADS Google Scholar

[633] Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Nat Commun, 2016, 7: 13193 CrossRef PubMed ADS Google Scholar

[634] Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Adv Mater, 2014, 26: 8154-8162 CrossRef PubMed Google Scholar

[635] Nam J, Son S, Ochyl LJ, Kuai R, Schwendeman A, Moon JJ. Nat Commun, 2018, 9: 1074 CrossRef PubMed ADS Google Scholar

[636] Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, DeSimone JM, Tepper JE, Vincent BG, Serody JS, Wang AZ. Nat Nanotech, 2017, 12: 877-882 CrossRef PubMed ADS Google Scholar

[637] Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, Tian L, Yi X, Yang K, Liu Z. Nat Biomed Eng, 2018, 2: 611-621 CrossRef Google Scholar

[638] Xia Y, Wu J, Wei W, Du Y, Wan T, Ma X, An W, Guo A, Miao C, Yue H, Li S, Cao X, Su Z, Ma G. Nat Mater, 2018, 17: 187-194 CrossRef PubMed ADS Google Scholar

[639] Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H, Huang B, Sohail M, Luo S, Ho Um S, Khant H, Goodwin JT, Ramos J, Chiu W, Irvine DJ. Nat Mater, 2011, 10: 243-251 CrossRef PubMed ADS Google Scholar

[640] Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Nat Mater, 2017, 16: 489-496 CrossRef PubMed ADS Google Scholar

[641] Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, Weaver JC, Dellacherie MO, Shih TY, Ali OA, Kim J, Wucherpfennig KW, Mooney DJ. Nat Mater, 2018, 17: 528-534 CrossRef PubMed ADS Google Scholar

[642] Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, Grunwitz C, Vormehr M, Hüsemann Y, Selmi A, Kuhn AN, Buck J, Derhovanessian E, Rae R, Attig S, Diekmann J, Jabulowsky RA, Heesch S, Hassel J, Langguth P, Grabbe S, Huber C, Türeci ?, Sahin U. Nature, 2016, 534: 396-401 CrossRef PubMed ADS Google Scholar

[643] Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, Liu Z. ACS Nano, 2018, 12: 5121-5129 CrossRef Google Scholar

[644] Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Licona Limon P, Ferrandino AF, Gonzalez D, Habermann A, Flavell RA, Fahmy TM. Nat Mater, 2012, 11: 895-905 CrossRef PubMed ADS Google Scholar

[645] Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Nat Med, 2010, 16: 1035-1041 CrossRef PubMed Google Scholar

[646] Tang L, Zheng Y, Melo MB, Mabardi L, Casta?o AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ. Nat Biotechnol, 2018, 37: 707-716 CrossRef PubMed Google Scholar

[647] Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT. Nat Nanotech, 2017, 12: 813-820 CrossRef PubMed Google Scholar

[648] Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, Xia JX, Zhu YH, Wang J. J Control Release, 2016, 231: 17-28 CrossRef PubMed Google Scholar

[649] Wang C, Sun W, Ye Y, Hu Q, Bomba HN, Gu Z. Nat Biomed Eng, 2017, 1: 0011 CrossRef Google Scholar

[650] Wolinsky JB, Colson YL, Grinstaff MW. J Control Release, 2012, 159: 14-26 CrossRef PubMed Google Scholar

[651] Chen Y, Jiang L, Wang R, Lu M, Zhang Q, Zhou Y, Wang Z, Lu G, Liang P, Ran H, Chen H, Zheng Y. Adv Mater, 2014, 26: 7468-7473 CrossRef PubMed Google Scholar

[652] Wang Q, Xiao A, Liu S, Zheng C, Xu H, Yang X, Yang Y. Nanomed Nanotechnol Biol Med, 2018, 14: 1746–1747. Google Scholar

[653] European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. J Hepatol, 2012, 56: 908-943 CrossRef PubMed Google Scholar

[654] Golfieri R, Cappelli A, Cucchetti A, Piscaglia F, Carpenzano M, Peri E, Ravaioli M, D’Errico-Grigioni A, Pinna AD, Bolondi L. Hepatology, 2011, 53: 1580-1589 CrossRef PubMed Google Scholar

[655] Llovet JM, Real MI, Monta?a X, Planas R, Coll S, Aponte J, Ayuso C, Sala M, Muchart J, Solà R, Rodés J, Bruix J. Lancet, 2002, 359: 1734-1739 CrossRef Google Scholar

[656] de Baere T, Arai Y, Lencioni R, Geschwind JF, Rilling W, Salem R, Matsui O, Soulen MC. Cardiovasc Intervent Radiol, 2016, 39: 334-343 CrossRef PubMed Google Scholar

[657] Poursaid A, Jensen MM, Huo E, Ghandehari H. J Control Release, 2016, 240: 414-433 CrossRef PubMed Google Scholar

[658] Angelico M. Dig Liver Dis, 2016, 48: 796-797 CrossRef PubMed Google Scholar

[659] Wang Q, Zhao Y, Yang Y, Xu H, Yang X. Colloid Polym Sci, 2007, 285: 515-521 CrossRef Google Scholar

[660] Wang Q, Zhao Y, Xu H, Yang X, Yang Y. J Appl Polym Sci, 2009, 113: 321-326 CrossRef Google Scholar

[661] Zhao H, Zheng C, Feng G, Zhao Y, Liang H, Wu H, Zhou G, Liang B, Wang Y, Xia X. Am J Neuroradiol, 2012, 34: 169-176 CrossRef PubMed Google Scholar

[662] Qian K, Ma Y, Wan J, Geng S, Li H, Fu Q, Peng X, Kan X, Zhou G, Liu W, Xiong B, Zhao Y, Zheng C, Yang X, Xu HB. J Control Release, 2015, 212: 41-49 CrossRef PubMed Google Scholar

[663] Liu Y, Peng X, Qian K, Ma Y, Wan J, Li H, Zhang H, Zhou G, Xiong B, Zhao Y, Zheng C, Yang X. J Mater Chem B, 2017, 5: 907-916 CrossRef Google Scholar

[664] Ma Y, Wan J, Qian K, Geng S, He N, Zhou G, Zhao Y, Yang X. J Mater Chem B, 2014, 2: 6044-6053 CrossRef Google Scholar

[665] Li J, Yu M, Xiao Y, Yang L, Zhang J, Ray E, Yang X. Mol Clin Oncol, 2013, 1: 1019-1024 CrossRef PubMed Google Scholar

[666] Antonio Chiocca E. Nat Rev Cancer, 2002, 2: 938-950 CrossRef PubMed Google Scholar

[667] Wan J, Geng S, Zhao H, Peng X, Zhou Q, Li H, He M, Zhao Y, Yang X, Xu H. J Control Release, 2016, 235: 328-336 CrossRef PubMed Google Scholar

[668] Zhao H, Xu J, Wan J, Geng S, Li H, Peng X, Fu Q, He M, Zhao Y, Yang X. Nanoscale, 2017, 9: 5859-5871 CrossRef PubMed Google Scholar

[669] Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Adv Mater, 2018, 136: 1802244 CrossRef PubMed Google Scholar

[670] Manthe RL, Foy SP, Krishnamurthy N, Sharma B, Labhasetwar V. Mol Pharm, 2010, 7: 1880-1898 CrossRef PubMed Google Scholar

[671] Song KD. Clin Mol Hepatol, 2016, 22: 509-515 CrossRef PubMed Google Scholar

[672] Lang BHH, Wu ALH. J Ther Ultrasound, 2017, 5: 11 CrossRef PubMed Google Scholar

[673] Liu X, Chen H, Chen X, Alfadhl Y, Yu J, Wen D. Appl Phys Rev, 2015, 2: 011103 CrossRef ADS Google Scholar

[674] Raoof M, Curley SA. Int J Hepatol, 2011, 2011(3): 1-6 CrossRef PubMed Google Scholar

[675] Corr SJ, Raoof M, Mackeyev Y, Phounsavath S, Cheney MA, Cisneros BT, Shur M, Gozin M, McNally PJ, Wilson LJ, Curley SA. J Phys Chem C, 2012, 116: 24380-24389 CrossRef PubMed Google Scholar

[676] Rejinold NS, Jayakumar R, Kim YC. J Control Release, 2015, 204: 85-97 CrossRef PubMed Google Scholar

[677] Chen L, Sun J, Yang X. Cancer Lett, 2016, 370: 78-84 CrossRef PubMed Google Scholar

[678] Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Chem Soc Rev, 2017, 46: 4218-4244 CrossRef PubMed Google Scholar

[679] Shi J, Kantoff PW, Wooster R, Farokhzad OC. Nat Rev Cancer, 2017, 17: 20-37 CrossRef PubMed Google Scholar

[680] Azhdarzadeh M, Saei AA, Sharifi S, Hajipour MJ, Alkilany AM, Sharifzadeh M, Ramazani F, Laurent S, Mashaghi A, Mahmoudi M. Nanomedicine, 2015, 10: 2931-2952 CrossRef PubMed Google Scholar

[681] Chittajallu DR, Florian S, Kohler RH, Iwamoto Y, Orth JD, Weissleder R, Danuser G, Mitchison TJ. Nat Methods, 2015, 12: 577-585 CrossRef PubMed Google Scholar

[682] Chen Z, Liu Y, Sun B, Li H, Dong J, Zhang L, Wang L, Wang P, Zhao Y, Chen C. Small, 2014, 10: 2362-2372 CrossRef PubMed Google Scholar

[683] Wang Y, Santos A, Evdokiou A, Losic D. J Mater Chem B, 2015, 3: 7153-7172 CrossRef Google Scholar

[684] Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. J Food Drug Anal, 2014, 22: 64-75 CrossRef PubMed Google Scholar

[685] Smith MJ, Brown JM, Zamboni WC, Walker NJ. Toxicol Sci, 2014, 138: 249-255 CrossRef PubMed Google Scholar

[686] Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Nanotoxicology, 2014, 8: 233-278 CrossRef PubMed Google Scholar

[687] Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC. Science, 2015, 347: 83-86 CrossRef PubMed ADS Google Scholar

[688] Tsai YY, Huang YH, Chao YL, Hu KY, Chin LT, Chou SH, Hour AL, Yao YD, Tu CS, Liang YJ, Tsai CY, Wu HY, Tan SW, Chen HM. ACS Nano, 2011, 5: 9354-9369 CrossRef PubMed Google Scholar

[689] Monopoli MP, Aberg C, Salvati A, Dawson KA. Nat Nanotech, 2012, 7: 779-786 CrossRef PubMed ADS Google Scholar

[690] Vizirianakis IS. Nanomed-Nanotechnol Biol Med, 2011, 7: 11-17 CrossRef PubMed Google Scholar

[691] Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Biomater Sci, 2014, 2: 1210-1221 CrossRef Google Scholar

[692] Cheng X, Tian X, Wu A, Li J, Tian J, Chong Y, Chai Z, Zhao Y, Chen C, Ge C. ACS Appl Mater Interfaces, 2015, 7: 20568-20575 CrossRef Google Scholar

[693] Wang L, Li J, Pan J, Jiang X, Ji Y, Li Y, Qu Y, Zhao Y, Wu X, Chen C. J Am Chem Soc, 2013, 135: 17359-17368 CrossRef PubMed Google Scholar

[694] Chen R, Qiao J, Bai R, Zhao Y, Chen C. Anal Bioanal Chem, 2018: 1–16. Google Scholar

[695] Wang L, Zhang T, Li P, Huang W, Tang J, Wang P, Liu J, Yuan Q, Bai R, Li B, Zhang K, Zhao Y, Chen C. ACS Nano, 2015, 9: 6532-6547 CrossRef Google Scholar

[696] Chen R, Ling D, Zhao L, Wang S, Liu Y, Bai R, Baik S, Zhao Y, Chen C, Hyeon T. ACS Nano, 2015, 9: 12425-12435 CrossRef Google Scholar

[697] Li YF, Zhao J, Qu Y, Gao Y, Guo Z, Liu Z, Zhao Y, Chen C. Nanomed-Nanotechnol Biol Med, 2015, 11: 1531-1549 CrossRef PubMed Google Scholar

[698] Wang L, Yan L, Liu J, Chen C, Zhao Y. Anal Chem, 2017, 90: 589-614 CrossRef PubMed Google Scholar

  • Scheme 1

    Schematic illustration of precise nanomedicine for intelligent therapy of cancer (color online).

  • Figure 1

    Illustration of novel approach to confine tumor using Gd@C82(OH)22 nanoparticles as emerging tumor caging agent for tumor imprisonment (color online).

  • Figure 2

    Schematic representation of the characteristics of supramolecular chemotherapy (color online).

  • Scheme 2

    Various nanoparticles for intelligent therapy of cancer discussed in this review (color online).

  • Figure 3

    Schematic representation of the therapeutic mechanism of nanorobot-Th within tumor vessels. (a) DNA origami sheet is prepared by annealing the mixture of M13 DNA scaffold and staples strands. Thrombin molecules are arranged at four designated locations on the origami sheet. Addition of the fasteners and targeting strands results in the formation of thrombin-loaded, tubular DNA nanorobots with additional targeting aptamers at both ends. Closed nanorobot binds to tumor endothelial cells by recognizing the cell surface targeting protein, nucleolin, and the tube subsequently opens to expose the encapsulated thrombin. Thrombin induces a localized thrombosis by activating platelets and inducing fibrin generation. (b) DNA nanorobot-Thrombin was administrated to tumor xenografted mice by tail vein injection and targeted tumor-associated vessels to deliver thrombin. The nanorobot-Th binds to the vascular endothelium by recognizing nucleolin and opens to expose the encapsulated thrombin, which induces localized thromboses, tumor infarction and cell necrosis [6] (color online).

  • Figure 4

    Schematic illustration of assembly and release of GroEL-DOX and their mechanism of action in tumor cells. (a) DOX is loaded into GroEL and ATP triggers its release from cis and trans-ring of GroEL by causing a conformational change. (b) When GroEL-DOX gets to the tumor vasculature, it enters tumor microenvironment. It can attach to plectin, which is highly expressed on the tumor cells and since there is an augmented level of ATP, a conformational change occurs to GroEL and as a final step DOX is released. It can pass through the lipophilic cell membrane and penetrate into the cell nucleus and commence apoptosis [39] (color online).

  • Figure 5

    Diselenide-containing polymeric micelles loaded with Dox responded to γ-radiation as low as 5?Gy. (a) Schematic illustration of γ-radiation responsive release of Dox; (b) release profile of polymeric micelles under different doses of γ-radiation; (c) TEM figures showed morphology of polymeric micelles after different doses of γ-radiation [54] (color online).

  • Figure 6

    Tellurium-containing polymeric micelles respond to low concentration of ROS or low dose of γ-radiation [55] (color online).

  • Figure 7

    Schematic illustration of the design of in vivo self-assembled nanostructures in physiological environment, in which the building blocks and triggering factors are two important components (color online).

  • Figure 8

    The schematic illustration of the AIR effect of compound 1 in tumor site compared with compound 2, which was quickly excreted from the tumor [76] (color online).

  • Figure 9

    Schematic illustration of theranostic Ag2S nanodots generated via albumin-templated nanoreactor method [126] (color online).

  • Figure 10

    Ferritin caging CuS nanoparticles for efficient cancer theranostics. (a) Synthetic process of Ferritin caging CuS nanoparticles (CuS-Fn NCs) via nanoreactor method; (b) TEM images of CuS-Fn NCs with negative staining; (c) UV-Vis absorbance spectra of Fn without iron, Fn and CuS-Fn NCs; (d) PET images of tumor bearing mice at 2, 4, 8, 20, and 24?h post-injection of CuS-Fn NCs; (e) tumor growth profiles of the mice suffering from different treatments [149] (color online).

  • Figure 11

    Schematic illustration of Prussian blue nanoparticles inside CCMV capsid [157] (color online).

  • Figure 12

    Schematic illustration of various nucleic acid-based nanostructures (color online).

  • Figure 13

    Assembly of the ET module (a) and the FT module (b); (c) mechanism of EDTD for catalytic signal enhancement of specific mRNA expression in living cells [170] (color online).

  • Figure 14

    Working principle of DNA engineered nanomachine. (a) Structural diagram of DNA-logic gate TP nanomachine, which contains reporter toe, recognition toe 1, recognition toe 2 and DNA TP scaffold. Strand cS is completely complementary to strand S and a piece of sgc8c, whereas strand cF is completely complementary to strand F and a piece of sgc4f. (b) Scheme of aptamer-based 3D DNA nanomachine for targeted cell surface computing. Two aptamers recognize and bind to their membrane biomarkers, thus releasing cS and cF from respective recognition toes. Driven by DNA strand displacement reactions, the fluorescence signal in reporter toe switches to “ON” from its original quenched (OFF) state [171] (color online).

  • Figure 15

    (a) Chemical structure of COX-2 probe and the different probe response at low or high COX-2 concentrations [198]. (b) Chemical structure of β-gal activatable probe and its turn-on mechanism [200]. (c) Structure of cetuximab-conjugated AIE nanoprobe [203]. (d) Structure of the activatable aptamer probe. Its fluorescence will be turned on upon binding to target cancer cells via a conformational alteration [207] (color online).

  • Figure 16

    (a) Structure of the extracellular pH-activatable nanoprobe and (b) its response to the change of pH condition [208]; (c) chemical structure of the hypoxia-responsive probe [209]; (d) two-step response of the successively activatable probe to the acidic and hypoxic tumor microenvironment [211] (color online).

  • Figure 17

    Schematic overview of (a) the principles of PET, SPECT, CLI and RLI. (b) Proposed flowchart of general procedures for nanomaterial-assisted PET, SPECT and multivalent approach. (c) Common strategies for radioactive nanomaterial fabrication: (1) chelator-assisted surface radiolabeling; (2) rapid covalent attachment; (3) nanomaterial surface/core-doping via chelator-free methods; (4) isotope/cation exchange; (5) proton/neutron beam activation; (6) molecular self-assembly of radiolabeled precursors (Note: blue/yellow semispheres denote applicability of both organic and inorganic nanomaterials) (color online).

  • Figure 18

    Alluvial diagram quantitatively maps the extent of relations between nanostructure, radioisotope and imaging characteristics among organic and inorganic radioactive nanomaterials. The inorganic class is the most popular one for radionuclide-based imaging, in which iron oxide, gold, quantum dots and silica NPs are frequently used nanoplatforms. 64Cu, 89Zr, 18F and 68Ga are mostly reported in PET and CLI/CRETI, while 99mTc, 111In, 125I, 131I are commonly used in SPECT. 99mTc is also a major radionuclide for RLI application. SWN: single-walled carbon nanotube; MSN: mesoporous silica nanoparticles; HMSN: hollow mesoporous silica nanoparticle; EC: electron capture; UCNP: upconverting nanoparticles; CD: cluster decay; FI: fluorescence imaging; NIRFI: near-infrared fluorescence imaging; MRI: magnetic resonance imaging; PAI: photoacoustic imaging. Note: Alluvial diagram was obtained using RAWGraphs [243] (color online).

  • Figure 19

    Molecular subtyping of breast cancers with different 5-year prognosis using QDs [290]. (a) Tissue microarrays of breast cancer specimens; (b) imaging of 3 key molecules of BC based on QD-IHC; (c) multi-spectral image analysis to acquire spectral information for each molecule of breast cancer specimens; (d) quantitative information of 3 key molecules for each breast cancer case related to 5-year disease free survival (color online).

  • Figure 20

    In vivo noninvasive fluorescence imaging of the tumor in the NIR-IIb window [320]. (a) Schematic drawing illustrating in-vivo confocal imaging of a mouse through the skin. (b) High-magnification (10× objective), wide-field fluorescence imaging (~1600?nm emission, 808?nm excitation) of a xenograft MC38 tumor on a mouse after tail vein i.v. injection of PEG-CSQDs (Scale bar: 1?mm). (c) In vivo layer-by-layer fluorescence confocal imaging of tumor vessels over an area (2500 μm×2500?μm) after an i.v. injection of PEG-CSQDs; z=0 is defined as the position when NIR-IIb signal started to show up in the tumor (Scale bar: 500?μm). (d, e) High-resolution fluorescence confocal imaging of tumor vessels at a depth of 180?μm. (d) 800 μm×800?μm (Scale bar: 200?μm); (e) 300 μm×300?μm (Scale bar: 50?μm). (f) Cross-sectional fluorescence intensity profile of the tumor vessel marked in J with the FWHM of ~9.2 and S/B ratio of 8.8 (color online).

  • Figure 21

    Preparation and application of Ag2Se@Mn QDs [325]. (a) Fabrication of Ag2Se@Mn QDs by controlling the reaction of Mn2+ with the Ag2Se nanocrystals having been pretreated in 80?°C NaOH solution (0.1?M) for 10?min. (b) Ag2Se@Mn QD labeling of cell-derived microvesicles (MVs) with the assistance of electroporation, and its applications in whole-body high-resolution dual-mode real-time tracking and in situ quantitative analysis of the dynamic bio-distribution of MVs in vivo (color online).

  • Figure 22

    Construction of biodegradable and highly efficient nanoparticles for gene delivery by introducing multiple interactions into polylysine [336] (color online).

  • Figure 23

    Illustration of ultrasensitive pH-triggered charge/size-rebound nanoparticles as gene delivery system [342] (color online).

  • Figure 24

    Summary of 2R2SP requirements and the 3S nanoproperty transitions in the CAPIR cascade for cancer nanomedicine [388,405] (color online).

  • Figure 25

    Scheme of the “cluster bomb”-like nanoassembly (a) and its 3S nanoproperty transition and traversing the CAPIR cascade (b) [388] (color online).

  • Figure 26

    Photoactive nanoparticles (NPs)-based phototherapy for cancer treatment. In both forms of photodynamic therapy (PDT) and photothermal therapy (PTT), photoactive NPs accumulated at tumors are used to produce reactive oxygen species (ROS) or induce temperature elevation under light exposure at a specific wavelength for triggering cancer cell death (color online).

  • Figure 27

    (A) Schematic illustration of Ce6-loaded gold vesicles for imaging-guided synergistic PTT/PDT; (B) In vivo NIR fluorescence imaging (a), thermal imaging (b), and photoacoustic imaging (c) of the tumor-bearing mice treated with the vesicles; (C) tumor growth profiles of tumor-bearing mice after different treatments [527] (color online).

  • Figure 28

    Schematic representation of the real-time monitoring of ATP-responsive drug release from polypeptide wrapped TDPA-Zn2+-UCNP@MSNs. Small molecule drugs were entrapped within the mesopores of the silica shell on the hybrid nanoparticles by capping the pores through multivalent interaction between oligo-aspartate side chain in polypeptide and TDPA-Zn2+ complex on nanoparticles surface using polypeptide. The UV-Vis emission from the multicolor UCNP under 980?nm excitation was quenched because of LRET between the loaded drugs and UCNPs. The addition of ATP led to a competitive binding of ATP to the TDPA-Zn2+ complex, which then displaced the surface bound compact polypeptide due to the high binding affinity of ATP to the metallic complex. The drug release was accompanied with an enhancement in the UV-Vis emission of UCNPs, thus providing real-time monitoring of drug release [578] (color online).

  • Figure 29

    (a) Synthetic process of UCNPs@PAA-DNA; (b) details of precise tumor targeting and specific photodynamic therapy for cancer [613] (color online).

  • Figure 30

    Local immunostimulatory radiation therapy based on the biomaterials together with systemic immune checkpoint blockade can induce a strong antitumor immune response to inhibit the tumor metastasis and prevent tumor recurrence. (a) Scheme of the combination of radioisotope therapy and immune therapy based on alginate hydrogel. (b) Gamma imaging of mice after i.t. injection of therapeutic agents. (c) Growth curves for tumors on mice after various treatments. Survival of mice with spontaneous metastases 4T1 tumors after various treatments to dispel their primary breast tumors. (d) Tumor growth curves of rechallenged tumors and survival curves of mice after various treatments [637] (color online).

  • Figure 31

    In situ activation of P-aPDL1 promoted the releases of anti-PDL1 (aPDL1) and cytokines. (a) Schematic illustration of the delivery of aPDL1 to the primary-tumor resection site by platelets; (b) fluorescence imaging of the mice 2?h after i.v. injection of P-aPDL1 or an equivalent dose of free aPDL1; (c) confocal images of the slices from residual tumors from the mice shown in (b); (d) quantified bioluminescence for the tumors from different treatment groups; (e, f) tumor growth (size) and survival curves [649] (color online).

  • Figure 32

    Embolization mechanisms for Ivalon (PVA microparticles), Lipiodol, and PIB-I-6150. Ivalon: collateral circulation occurs after embolization due to the large size of PVA microparticles; Lipiodol: embolization is rapidly eliminated due to blood scouring and tissue clearance in the peripheral blood vessels; PIB-I-6150: permanent and peripheral embolization is achieved by the formation of high-strength hierarchical 3D networks of nanogels through sol-gel transitions (color online).

  • Figure 33

    Role of serum proteins in the interaction of AuNRs with membranes. Partially exposed CTAB/AuNRs are incubated with BSA to form a hard BSA corona via Au?S coordination. The existence of the protein corona facilitates the protein receptor-mediated internalization and translocation of AuNRs to endo-/lysosomes, where the CTAB bilayer on AuNRs can probably induce lysosome-associated apoptosis. Without a protein coating, CTAB/AuNRs can directly destroy the cytoplasmic membrane, form defects, and cause the release of LDH, which eventually induces necrosis [693] (color online).

  • Figure 34

    Diagram of the ADME processes of NMs/NPs in vivo and summary of the current challenges for their quantitative analysis. NMs/NPs are exposed to human beings mostly through four routes, i.e., oral intake, skin contact, inhalation, and intravenous injection. Upon entering the body, NMs/NPs are quickly distributed into specific organs and then metabolized primarily by the liver. The final excretion of NMs/NPs usually occurs in the liver and kidney in the form of urine and feces. In general, the most important issues regarding the ADME processes of NMs/NPs include: (1) Where do and how much NMs/NPs get in (via absorption)? (2) Where do and how much NMs/NPs go (via distribution)? (3) How much, when do, and what form of NMs/NPs remain intact (via metabolism)? (4) Where do, how much, and what form of NMs/NPs stay in the system (via excretion)? At various stages of the ADME processes, the challenges for in vivo analysis of NMs/NPs may become largely different. Important analytical methods to resolve the analytical challenges for each ADME process are summarized [698] (color online).

  • Table 1   Table 1 Some classical embolic agents for clinical applications

    Trade name

    Material

    Mechanism of embolization

    Advantage

    Disadvantage

    Lipiodol?

    Iodized poppyseed oil

    Selective deposition in hepatocellular carcinoma, and frequently use with gelatin sponges

    Excellent X-ray contrast andlipiodol deposition in tumor asgold standard for TACE

    Pulmonary embolism caused byexcessive dosage

    Gelation sponge

    Gelatin

    Irregular shape, and mechanicalembolization of blood vessels

    Biodegradability

    Usually use in combination with contrast agent, and not suitable for drug loadingand long-term embolization

    KMGmicrosphere

    Sodium alginate

    Mechanical embolization ofmicrospheres into blood vessels

    Biodegradability and standardmicrospheres

    Usually use in combination with contrast agent and not suitable for drug loading

    DC Bead?

    Sulfonylated PVA

    Mechanical embolization of bloodvessels, and electrostatic interaction with chemotherapeutic drug

    Extensive use as drug-eluting bead,

    high drug loading efficiency, and

    slow drug release

    DC Bead is not superior to C-TACEin the treatment of liver cancer inclinic

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1