The 7Be(p,γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coefficient (ANC) for the virtual decay 8Bg.s. → 7Be + p. By using the charge symmetry relation, we obtain this proton ANC with the single neutron ANC of 8Lig.s. →7Li + n, which is determined with the distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) analysis of the 7Li(d, p)8Li angular distribution. The astrophysical S-factors and reaction rates of the direct capture process in the 7Be(p,γ)8B reaction are further deduced at energies of astrophysical relevance. The astrophysical S-factor at zero energy for direct capture, S17(0), is derived to be (19.9 ± 3.5) eV b in good agreement with the most recent recommended value. The contributions of the 1+ and 3+ resonances to the S-factor and reaction rate are also evaluated. The present result demonstrates that the direct capture dominates the 7Be(p,γ)8B reaction in the whole temperature range. This work provides an independent examination to the current results of the 7Be(p,γ)8B reaction.
[1] Adelberger E G, Garcia A, Hamish R, et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev Mod Phys, 2011, 83: 195-245
[2] Haxton W C, Robertson R G H, Serenelli A M. Solar neutrinos: Status and prospects. Ann Rev Astron Astrophys, 2013, 51: 21-61
[3] Ahmed S N, Anthony A E, Beier E W, et al. Measurement of the total active 8B solar neutrino flux at the sudbury neutrino observatory with enhanced neutral current sensitivity. Phys Rev Lett, 2004, 92: 181301
[4] Bahcall J N, Pinsonneault M H. What do we (not) know theoretically about solar neutrino fluxes? Phys Rev Lett, 2004, 92: 121301
[5] Bromm V, Larson R B. The first stars. Annu Rev Astron Astrophys, 2004, 42: 79-118
[6] Fuller G M, Woosley S E, Weaver T A. The evolution of radiationdominated stars. I. Nonrotating supermassive stars. Astrophys J, 1986, 307: 675-686
[7] WiescherM,Görres J, Graff S, et al. The hot proton-proton chains in low-metallicity objects. Astrophys J, 1989, 343: 352-364
[8] Filippone B W, Elwyn A J, Davids C N, et al. Measurement of the 7Be(p, γ)8B reaction cross section at low energies. Phys Rev Lett, 1983, 50: 412-416
[9] Filippone B W, Elwyn A J, Davids C N, et al. Proton capture cross section of 7Be and the flux of high energy solar neutrinos. Phys Rev C, 1983, 28: 2222-2229
[10] Baby L T, Bordeanu C, Goldring G, et al. Precision measurement of the 7Be(p, γ)8B cross section with an implanted 7Be target. Phys Rev Lett, 2003, 90: 022501
[11] Junghans A R,Mohrmann E C, Snover K A, et al. Precise measurement of the 7Be(p, γ)8B S factor. Phys Rev C, 2003, 68: 065803
[12] Terrasi F, Gialanella L, Imbriani G, et al. Direct measurement of the absolute cross section of p(7Be,γ)8B. Nucl Phys A, 2001, 688: 539-542
[13] Gialanella L, Strieder F, Campajola L, et al. Absolute cross section of p(7Be,γ)8B using a novel approach. Eur Phys J A, 2000, 7: 303-305
[14] Baur G, Bertulani C A, Rebel H. Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest. Nucl Phys A, 1986, 458: 188-204
[15] Iwasa N, Boué F, Surówka G, et al. Measurement of the Coulomb dissociation of 8B at 254 MeV/nucleon and the 8B solar neutrino flux. Phys Rev Lett, 1999, 83: 2910-2913
[16] Davids B, Anthony D W, Aumann T, et al. S17(0) determined from the Coulomb breakup of 83 MeV/nucleon 8B. Phys Rev Lett, 2001, 86: 2750-2753
[17] Schümann F, Hammache F, Typel S, et al. Low-energy cross section of the 7Be(p, γ)8B solar fusion reaction from the Coulomb dissociation of 8B. Phys Rev C, 2006, 73: 015806
[18] Schümann F, Hammache F, Typel S, et al. Coulomb dissociation of 8B and the low-energy cross section of the 7Be(p, γ)8B solar fusion reaction. Phys Rev Lett, 2003, 90: 232501
[19] Liu W P, Bai X X, Zhou S H, et al. Angular distribution for the 7Be(d, n)8B reaction at Ec.m. = 5.8 MeV and the S17(0) factor for the 7Be(p, γ)8B reaction. Phys Rev Lett, 1996, 77: 611-614
[20] Azhari A, Burjan V, Carstoiu F, et al. Asymptotic normalization coefficients and the 7Be(p, γ)8B astrophysical S factor. Phys Rev C, 2001, 63: 055803
[21] Ogata K, Yahiro M, Iseri Y, et al. Determination of S17 from 7Be(d, n)8B reaction. Phys Rev C, 2003, 67: 011602
[22] Das J J, Datar M, Sugathan P, et al. Astrophysical S17(0) factor from a measurement of the 2H(7Be,8B)n reaction at Ec.m. = 4.5 MeV. Phys Rev C, 2006, 73: 015808
[23] Barker F C. The low-energy 7Be(p, γ)8B cross section from an Rmatrix approach. Nucl Phys A, 1995, 588: 693-705
[24] Robertson G H. Proton Capture by 7Be and the solar neutrino problem. Phys Rev C, 1973, 7: 543-547
[25] Typel S,Wolter H H, Baur G. Higher-order effects in the Coulomb dissociation of 8B into 7Be + p. Nucl Phys A, 1997, 613: 147-164
[26] Descouvemont P, Baye D. Microscopic study of the 7Li(n,γ)8Li and 7Be(p, γ)8B reactions in a multiconfiguration three-cluster model. Nucl Phys A, 1994, 567: 341-353
[27] Csótó A, Langanke K, Koonin S E, et al. 7Be(p, γ)8B cross section and the properties of 7Be. Phys Rev C, 1995, 52: 1130-1133
[28] Descouvemont P. Reanalysis of the 7Be(p, γ)8B S factor in a microscopic model. Phys Rev C, 2004, 70: 065802
[29] Navrátil P, Bertulani C A, Caurier E. 7Be(p, γ)8B S factor from ab initio no-core shell model wave functions. Phys Rev C, 2006, 73: 065801
[30] Navrátil P, Roth R, Quaglioni S. Ab initio many-body calculation of the 7Be(p, γ)8B radiative capture. Phys Lett B, 2011, 704: 379-383
[31] Schiffer J P, Morrison G C, Siemssen R H. Study of the (d,p) reaction in the 1p shell. Phys Rev, 1967, 64: 1274-1284
[32] Timofeyuk N K, Johnson R C, Mukhamedzhanov A M. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance to nuclear astrophysics. Phys Rev Lett, 2003, 91: 232501
[33] Timofeyuk N K, Descouvemont P. Asymptotic normalization coefficients for mirror virtual nucleon decays in a microscopic cluster model. Phys Rev C, 2005, 71: 064305
[34] Guo B, Li Z H, LiuWP, et al. The 8Li(d, p)9Li reaction and astrophysical 8B(p, γ)9C reaction rate. Nucl Phys A, 2005, 761: 162-172
[35] Guo B, Li Z H, Bai X X, et al. Determination of the astrophysical 26Si(p, γ)27P reaction rate from the asymptotic normalization coefficients of 27Mg →26Mg + n. Phys Rev C, 2006, 73: 048801
[36] Guo B, Li Z H, Liu W P, et al. Determination of astrophysical 11C(p, γ)12N reaction rate from the asymptotic normalization coefficients of 12B →11B + n. J Phys G, 2007, 34: 103-114
[37] Thompson I J. Coupled reaction channels calculations in nuclear physics. Comput Phys Rep, 1988, 7: 167-212
[38] Johnson R C, Soper P J R. Contribution of deuteron breakup channels to deutron stripping and elastic scattering. Phys Rev C, 1970, 1: 976- 990
[39] Wales G L, Johnson R C. Deuteron break-up effects in (p,d) reactions at 65 MeV. Nucl Phys A, 1976, 274: 168-176
[40] Varner R L, Thompson W J, Mcabee T L, et al. A global nucleon optical model potential. Phys Rev, 1991, 201: 57-119
[41] Koning A J, Delaroche J P. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A, 2003, 713: 231-310
[42] Blokhintsev L D, Borbely I, Dolinskii E I. Nuclear vertex constants. Sov J Part Nucl, 1977, 8: 485
[43] Trache L, Azhari A, Carstoiu F, et al. Asymptotic normalization coefficients for 8B → 7Be + p from a study of 8Li → 7Li+ n. Phys Rev C, 2003, 67: 062801
[44] Bertulani C A. RADCAP: A potential model tool for direct capture reactions. Comput Phys Commun, 2003, 156: 123-141
[45] Rolfs C E, Rodney W S. Cauldrons in the Cosmos. Chicago: University of Chicago Press, 1988
[46] Ajzenberg-Selove F. Energy levels of light nuclei A = 5-10. Nucl Phys A, 1988, 490: 1-225
[47] Baby L T, Bordeanu C, Goldring G, et al. New measurement of the proton capture rate on 7Be and S17(0) factor. Phys Rev C, 2003, 67: 065805
[48] Strieder F, Gialanella L, Gyürky G, et al. Absolute cross section of 7Be(p, γ)8B. Nucl Phys A, 2001, 696: 219-230
[49] Junghans A R, Snover K A, Mohrmann E C, et al. Updated S factors for the 7Be(p, γ)8B reaction. Phys Rev C, 2010, 81: 012801
[50] Hammache F, Bogaert G, Aguer P, et al. New measurement and analysis of the 7Be(p, γ)8B cross section. Phys Rev Lett, 1998, 80: 928- 931
[51] Hammache F, Bogaert G, Aguer P, et al. Low-energy measurement of the 7Be(p, γ)8B cross section. Phys Rev Lett, 2001, 80: 3985-3988
[52] Adelberger E G, Austin S M, Bahcall J N, et al. Solar fusion cross sections. Rev Mod Phys, 1998, 70: 1265-1291
[53] Motobayashi T, Iwasa N, Ando Y, et al. Coulomb dissociation of 8B and the 7Be(p, γ)8B reaction at low energies. Phys Rev Lett, 1994, 73: 2680-2683
[54] Howell D, Davids B, Greene J P, et al. First determination of the 8Li valence neutron asymptotic normalization coefficient using the 7Li(8Li,7Li)8Li reaction. Phys Rev C, 2013, 88: 025804
[55] Caughlan G R, Fowler W A. Thermonuclear reaction rates V. At Data Nucl Data Tables, 1988, 40: 283-334
[56] Angulo C, Arnould M, Rayet M, et al. A compilation of chargedparticle induced thermonuclear reaction rates. Nucl Phys A, 1999, 656: 3-183
[57] Xu Y, Takahashi K, Goriely S, et al. NACRE II: An update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A < 16. Nucl Phys A, 2013, 918: 61-169
[58] Rauscher T, Thielemann F K. Tables of nuclear cross sections and reaction rates: an addendum to the paper "astrophysical reaction rates from statistical model calculations". At Data Nucl Data Tables, 2001, 79: 47-64
[59] Jones K L, Adekola A S, Bardayan D W, et al. The magic nature of 132Sn explored through the single-particle states of 133Sn. Nature, 2010, 465: 454-457
[60] Liu W P, Li Z H, Bai X X, et al. BRIF and CARIF progress. Sci China-Phys Mech Astron, 2011, 54: 14-17
[61] Xu HM, Gagliardi C A, Tribble R E, et al. Overall normalization of the astrophysical S factor and the nuclear vertex constant for 7Be(p, γ)8B reactions. Phys Rev Lett, 1994, 73: 2027-2030
[62] Azhari A, Burjan V, Carstoiu F, et al. The 10B(7Be, 8B)9Be reaction and the 7Be(p, γ)8B S factor. Phys Rev Lett, 1999, 82: 3960-3963
[63] Li Z H, Su J, Guo B, et al. Determination of the 12C(p, γ)13N reaction rates from the 12C(7Li, 6He)13N reaction. Sci China-Phys Mech Astron, 2010, 53: 658-663
[64] Li Z H, Li E T, Su J, et al. Study of the primordial lithium abundance. Sci China-Phys Mech Astron. 2011, 54: 67-72
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1