Superlattices have great application potentials in thermo-electric materials and solid laser techniques. Their complicated heat transport mechanisms due to size effects, multi-interfaces and mini-band are very important issues for the prediction of thermal conductivity. In this paper, the short-period Si/Ge superlattices are investigated by a modified series model based on the Debye-Callaway description. The Lambert Law is used to describe the phonon emission within hemisphere space. In addition, the phonon interface transmission coefficients obtained from the phonon wave packet simulation are incorporated into boundary condition of the model, which removes the fitting parameters in the model. Better agreement with experiment is obtained. The effects of temperature, wavelength-dependent phonon transmission, superlattice periods, as well as the thickness of Ge layer are considered in this paper.
[1] Koehler J S. Attempt to design a strong solid. Phys Rev B, 1970, 2: 547-551
[2] Esaki L, Tsu R. Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev, 1970, 1: 61-65
[3] Fan X, Zeng G, LaBounty C, et al. SiGeC/Si superlattice microcoolers. Appl Phys Lett, 2001, 11: 1580-1582
[4] Chen G. Nanoscale Heat transfer and nanostructured thermoelectrics. IEEE Trans Compon Pack Technol, 2006, 2: 238-246
[5] Chen G, Shakouri A. Heat transfer in nanostructures for solid-State energy conversion. J Heat Trans-T Asme, 2002, 2: 242-252
[6] Chen G. Engineering thermophysical properties of micro- and nanostructures. Int J Therm Sci, 2001, 8: 693-701
[7] Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport. J Appl Phys, 2003, 2: 793-818
[8] Lee S M, Cahill D G. Heat transport in thin dielectric films. J Appl Phys, 1997, 6: 2590-2595
[9] Lee S M, Cahill D G. Influence of interface thermal conductance on the apparent thermal conductivity of thin films. Microscale Therm Eng, 1997, 1: 47-52
[10] Yao T. Thermal-properties of AlAs/GaAs superlattices. Appl Phys Lett, 1987, 22: 1798-1800
[11] Yu X Y, Chen G, Verma A, et al. Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure. Appl Phys Lett, 1995, 67: 3554-3556
[12] Capinski W S, Maris H J, Ruf T, et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys Rev B, 1999, 12: 8105-8113
[13] Lee S M, Cahill D G, Venkatasubramanian R. Thermal conductivity of Si-Ge superlattices. Appl Phys Lett, 1997, 22: 2957-2959
[14] Borca-Tasciuc T, Liu W L, Liu J L, et al. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattice Microst, 2000, 3: 199-206
[15] Huxtable S T, Abramson A R, Tien C L, et al. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl Phys Lett, 2002, 10: 1737-1739
[16] Liu C, Yu C, Chien H, et al. Thermal conductivity of Si/SiGe superlattice films. J Appl Phys, 2008, 11: 114301-114308
[17] Venkatasubramanian R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys Rev B, 2000, 4: 3091-3097
[18] Touzelbaev M N, Zhou P, Venkatasubramanian R, et al. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. J Appl Phys, 2001, 2: 763-767
[19] Chen G, Tien C L, Wu X, et al. Thermal-diffusivity measurement of Gaas/Algaas thin-film structures. J Heat Trans-T Asme, 1994, 2: 325-331
[20] Savic I, Donadio D, Gygi F, et al. Dimensionality and heat transport in Si-Ge superlattices. Appl Phys Lett, 2013, 102: 0731137
[21] Narayanamurti V, Stormer H L, Chin M A, et al. Selective transmission of high-frequency phonons by a super-lattice-dielectric phonon filter. Phys Rev Lett, 1979, 27: 2012-2016
[22] Simkin M V, Mahan G D. Minimum thermal conductivity of superlattices. Phys Rev Lett, 2000, 5: 927-930
[23] Shang Y R, Dow J D. Thermal conductivity of superlattices. Phys Rev B, 1982, 6: 3750-3755
[24] Tamura S, Tanaka Y, Maris H J. Phonon group velocity and thermal conduction in superlattices. Phys Rev B, 1999, 4: 2627-2630
[25] Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B, 1998, 23: 14958-14973
[26] Chen G, Neagu M. Thermal conductivity and heat transfer in superlattices. Appl Phys Lett, 1997, 19: 2761-2763
[27] Singh D, Murthy J Y, Fisher T S. Effect of phonon dispersion on thermal conduction across Si/Ge interfaces. J Heat Trans-T Asme, 2011, 12240112
[28] Aksamija Z, Knezevic I. Thermal conductivity of Si1-xGex/Si1-yGey superlattices: Competition between interfacial and internal scattering. Phys Rev B, 2013, 88: 155318
[29] Tian Z T, Esfarjani K, Chen G. Green’s function studies of phonon transport across Si/Ge superlattices. Phys Rev B, 2014, 23: 235306-235307
[30] Luckyanova M N, Garg J, Esfarjani K, et al. Coherent phonon heat conduction in superlattices. Science, 2012, 6109: 936-939
[31] Alvarez F X, Alvarez-Quintana J, Jou D, et al. Analytical expression for thermal conductivity of superlattices. J Appl Phys, 2010, 107: 084303
[32] Liang X G, Shi B. Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices. Mat Sci Eng A-Struct, 2000, 2: 198-202
[33] Garg J, Bonini N, Marzari N. High thermal conductivity in short- period superlattices. Nano Lett, 2011, 12: 5135-5141
[34] Hepplestone S P, Srivastava G P. Phononic gaps in thin semiconductor superlattices. J Appl Phys, 2010, 107: 043504
[35] Hepplestone S P, Srivastava G P. Theory of interface scattering of phonons in superlattices. Phys Rev B, 2010, 82: 144303
[36] Hepplestone S P, Srivastava G P. Lattice dynamics and thermal properties of phononic semiconductors. Phys Rev B, 2011, 84: 115326
[37] Huberman S C, Larkin J M, Mcgaughey A, et al. Disruption of superlattice phonons by interfacial mixing. Phys Rev B, 2013, 88: 155311
[38] Chen P X, Katcho N A, Feser J P, et al. Role of surface-segregation- driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys Rev Lett, 2013, 111: 115901
[39] Schelling P K, Phillpot S R, Keblinski P. Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl Phys Lett, 2002, 14: 2484-2486
[40] Koh Y K, Cao Y, Cahill D G, et al. Heat-transport mechanisms in superlattices. Adv Funct Mater, 2009, 4: 610-615
[41] Callaway J. Model for lattice thermal conductivity at low temperatures. Phys Rev, 1959, 4: 1046-1051
[42] Asen-Palmer M, Bartkowski K, Gmelin E, et al. Thermal conductivity of germanium crystals with different isotopic compositions. Phys Rev B, 1997, 15: 9431-9447
[43] Morelli D T, Heremans J P, Slack G A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and Group III-V semiconductors. Phys Rev B, 2002, 66: 195304
[44] Herring C. Role of low-energy phonons in thermal conduction. Phys Rev, 1954, 4: 954-965
[45] Slack G A, Galginaitis S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Phys Rev, 1964, 1A: A253-A268
[46] Casimir H. Note on the conduction of heat in crystals. Physica, 1938, 5: 495-500
[47] Berman R, Simon F E, Ziman J M. The thermal conductivity of diamond at low temperatures. Proc R Soc London Ser A-Mathe Phys Sci, 1953, 1141: 171-183
[48] Vandersande J W. Thermal-conductivity reduction in electron-irradiated type-2alpha diamonds at low-temperatures. Phys Rev B, 1977, 4: 2355-2362
[49] Berman R R. Thermal Conduction in Solids. Oxford: Clarendon Press, 1976
[50] Ziman J M. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford: Clarendon Press, 1979
[51] Schelling P K, Phillpot S R. Multiscale simulation of phonon transport in superlattices. J Appl Phys, 2003, 9: 5377-5387
[52] Broido D A, Reinecke T L. Lattice thermal conductivity of superlattice structures. Phys Rev B, 2004, 70: 081310
[53] Zhang Z M. Nano/Microscale Heat Transfer. New York: McGraw-Hill Professional, 2007
[54] Tien C, Majumdar A, Gerner F M. Microscale Energy Transport. Washington D C: Taylor & Francis, 1998
[55] Li X B, Yang R G. Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Phys Rev B, 2012, 86: 054305
[56] Hyldgaard P, Mahan G D. Phonon superlattice transport. Phys Rev B, 1997, 17: 10754-10757
[57] Ward A, Broido D A. Intrinsic lattice thermal conductivity of Si/Ge and GaAs/AlAs superlattices. Phys Rev B, 2008, 77: 245328
[58] Huang M, Tsai T, Liu L. A study of phonon transport in Si/Ge superlattice thin films using a fast MC solver. J Electron Mater, 2010, 9: 1875-1879
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1