Introduction to holographic superconductor models

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 58, Issue 6: 60401(2015) https://doi.org/10.1007/s11433-015-5676-5

Introduction to holographic superconductor models

More info
  • AcceptedMar 12, 2015
  • PublishedMay 4, 2015

Abstract

In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.


References

[1] Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity. Phys Rev, 1957, 108: 1175-1204

[2] Carlson E W, Emery V J, Kivelson S A, et al. Concepts in high temperature superconductivity. In: The Physics of Superconductors. Berlin: Springer, 2004. 275-451

[3] Maldacena J M. The large N limit of superconformal field theories and supergravity. Int J Theor Phys, 1999, 38: 1113-1133

[4] Gubser S S, Klebanov I R, Polyakov A M. Gauge theory correlators from non-critical string theory. Phys Lett B, 1998, 428: 105-114. [arXiv: 9802109 [hep-th]]

[5] Witten E. Anti-de sitter space and holography. Adv TheorMath Phys,1998, 2: 253-291. [arXiv: 9802150 [hep-th]]

[6] Qi X L. Exact holographic mapping and emergent space-time geometry. [arXiv: 1309.6282 [hep-th]]

[7] Horowitz G T. Introduction to holographic superconductors. Lect Notes Phys, 2011, 828: 313-347. [arXiv: 1002.1722 [hep-th]]

[8] Herzog C P. Lectures on holographic superfluidity and superconductivity. J Phys A, 2009, 42: 343001. [arXiv: 0904.1975 [hep-th]]

[9] Iqbal N, Liu H, Mezei M. Lectures on holographic non-Fermi liquids and quantum phase transitions. [arXiv: 1110.3814 [hep-th]]

[10] Musso D. Introductory notes on holographic superconductors. [arXiv: 1401.1504 [hep-th]]

[11] Hartnoll S A, Herzog C P, Horowitz G T. Building a holographic superconductor. Phys Rev Lett, 2008, 101: 031601. [arXiv: 0803.3295 [hep-th]]

[12] Hartnoll S A, Herzog C P, Horowitz G T. Holographic superconductors. J High Energy Phys, 2008, 0812: 015. [arXiv: 0810.1563 [hepth]]

[13] Nishioka T, Ryu S, Takayanagi T. Holographic superconductor/ insulator transition at zero temperature. J High Energy Phys,2010, 1003: 131. [arXiv: 0911.0962 [hep-th]]

[14] Chen J-W, Kao Y-J, Maity D, et al. Towards a holographic model of d-wave superconductors. Phys Rev D, 2010, 81: 106008. [arXiv:1003.2991 [hep-th]]

[15] Benini F, Herzog C P, Rahman R, et al. Gauge gravity duality for d-wave superconductors: Prospects and challenges. J High Energy Phys, 2010, 1011: 137. [arXiv: 1007.1981 [hep-th]]

[16] Mackenzie A P, Maeno Y. P-wave superconductivity. Physica B.2000, 280: 148-153

[17] Gubser S S, Pufu S S. The Gravity dual of a p-wave superconductor. J High Energy Phys, 2008, 0811: 033. [arXiv: 0805.2960 [hep-th]]

[18] Cai R G, He S, Li L, et al. A holographic study on vector condensate induced by a magnetic field. J High Energy Phys, 2013, 1312: 036. [arXiv: 1309.2098 [hep-th]]

[19] Cai R -G, Li L, Li L -F. A holographic p-wave superconductor model. J High Energy Phys, 2014, 1401: 032. [arXiv: 1309.4877 [hep-th]]

[20] Aprile F, Rodriguez-Gomez D, Russo J G. P-wave holographic superconductors and five-dimensional gauged supergravity. J High Energy Phys, 2011, 1101: 056. [arXiv: 1011.2172 [hep-th]]

[21] Donos A, Gauntlett J P. Holographic helical superconductors. J High Energy Phys, 2011, 1112: 091. [arXiv: 1109.3866 [hep-th]]

[22] Donos A, Gauntlett J P. Helical superconducting black holes. Phys Rev Lett, 2012, 108: 211601. [arXiv: 1203.0533 [hep-th]]

[23] Denef F, Hartnoll S A. Landscape of superconducting membranes. Phys Rev D, 2009, 79: 126008. [arXiv: 0901.1160 [hep-th]]

[24] Gubser S S, Herzog C P, Pufu S S, et al. Superconductors from superstrings. Phys Rev Lett, 2009, 103: 141601. [arXiv: 0907.3510 [hep-th]]

[25] Gauntlett J P, Sonner J, Wiseman T. Holographic superconductivity in M-Theory. Phys Rev Lett, 2009, 103: 151601. [arXiv: 0907.3796 [hep-th]]

[26] Gubser S S, Pufu S S, Rocha F D. Quantum critical superconductors in string theory and M-theory. Phys Lett B, 2010, 683: 201-204. [arXiv: 0908.0011 [hep-th]]

[27] Gauntlett J P, Sonner J, Wiseman T. Quantum criticality and holographic superconductors in M-theory. J High Energy Phys, 2010,1002: 060. [arXiv: 0912.0512 [hep-th]]

[28] Kalyana R S, Sarkar S, Sathiapalan B, et al. Strong coupling BCS superconductivity and holography. Nucl Phys B, 2011, 852: 634-680. [arXiv: 1104.2843 [hep-th]]

[29] Bobev N, Kundu A, Pilch K, et al. Minimal holographic superconductors from maximal supergravity. J High Energy Phys, 2012, 1203:064. [arXiv: 1110.3454 [hep-th]]

[30] Ginzburg V L, Landau L D. On the theory of superconductivity. Zh Eksp Teor Fiz, 1950, 20: 1064-1082

[31] Cyrot M. Ginzburg-Landau theory for superconductors. Rep Prog Phys, 1973, 36: 103

[32] Weinberg S. Superconductivity for particular theorists. Prog Theor Phys Supp, 1986, 86: 43-53

[33] Kachru S, Liu X, Mulligan M. Gravity duals of Lifshitz-like fixed points. Phys Rev D, 2008, 78: 106005. [arXiv: 0808.1725 [hep-th]]

[34] Son D T. Toward an AdS/cold atoms correspondence: A geometric realization of the schrodinger symmetry. Phys Rev D, 2008, 78:046003. [arXiv: 0804.3972 [hep-th]]

[35] Balasubramanian K, McGreevy J. Gravity duals for non-relativistic CFTs. Phys Rev Lett, 2008, 101: 061601. [arXiv: 0804.4053 [hepth]]

[36] Charmousis C, Gouteraux B, Kim B S, et al. Effective holographic theories for low-temperature condensed matter systems. J High Energy Phys, 2010, 1011: 151. [arXiv: 1005.4690 [hep-th]]

[37] Gouteraux B, Kiritsis E. Generalized holographic quantum criticality at finite density. J High Energy Phys, 2011, 1112: 036. [arXiv:1107.2116 [hep-th]]

[38] Huijse L, Sachdev S, Swingle B. Hidden fermi surfaces in compressible states of gauge-gravity duality. Phys Rev B, 2012, 85: 035121. [arXiv: 1112.0573 [cond-mat.str-el]]

[39] Dong X, Harrison S, Kachru S, et al. Aspects of holography for theories with hyperscaling violation. J High Energy Phys, 2012, 1206:041. [arXiv: 1201.1905 [hep-th]]

[40] Kim B S. Schr´odinger holography with and without hyperscaling violation. J High Energy Phys, 2012, 1206: 116. [arXiv: 1202.6062 [hep-th]]

[41] Breitenlohner P, Freedman D Z. Stability in gauged extended supergravity. Annals Phys, 1982, 144: 249-281

[42] Peet A W, Polchinski J. UV/IR relations in AdS dynamics. Phys Rev D, 1999, 59: 065011. [arXiv: 9809022 [hep-th]]

[43] Balasubramanian V, Kraus P. A Stress tensor for Anti-de Sitter gravity. Commun Math Phys, 1999, 208: 413-428. [arXiv: 9902121 [hep-th]]

[44] Bianchi M, Freedman D Z, Skenderis K. How to go with an RG flow. J High Energy Phys, 2001, 0108: 041. [arXiv: 0105276 [hep-th]]

[45] Bianchi M, Freedman D Z, Skenderis K. Holographic renormalization. Nucl Phys B, 2002, 631: 159-194. [arXiv: 0112119 [hep-th]]

[46] Son D T, Starinets A O. Minkowski space correlators in AdS/CFT correspondence: Recipe and applications. J High Energy Phys, 2002,0209: 042. [arXiv: 0205051 [hep-th]]

[47] Herzog C P, Son D T. Schwinger-Keldysh propagators from AdS/CFT correspondence. J High Energy Phys, 2003, 0303: 046. [arXiv:0212072 [hep-th]]

[48] Skenderis K, van Rees B C. Real-time gauge/gravity duality. Phys Rev Lett, 2008, 101: 081601. [arXiv: 0805.0150 [hep-th]]

[49] Klebanov I R, Witten E. AdS/CFT correspondence and symmetry breaking. Nucl Phys B, 1999, 556: 89-114. [arXiv: 9905104 [hepth]]

[50] Witten E. Multitrace operators, boundary conditions, and AdS/CFT correspondence. [arXiv: 0112258 [hep-th]]

[51] Berkooz M, Sever A, Shomer A. 'Double trace' deformations, boundary conditions and space-time singularities. J High Energy Phys,2002, 0205: 034. [arXiv: 0112264 [hep-th]]

[52] Hawking S W. Breakdown of predictability in gravitational collapse. Phys Rev D, 1976, 14: 2460-2473

[53] Hawking S W. Information loss in black holes. Phys Rev D, 2005,72: 084013. [arXiv: 0507171 [hep-th]]

[54] Hawking S W. Information preservation and weather forecasting for black holes. [arXiv: 1401.5761 [hep-th]]

[55] Aharony O, Gubser S S,Maldacena J M, et al. Large N field theories, string theory and gravity. Phys Rept, 2000, 323: 183-386. [arXiv:9905111 [hep-th]]

[56] Hartnoll S A. Lectures on holographic methods for condensed matter physics. Class Quant Grav, 2009, 26: 224002. [arXiv: 0903.3246 [hep-th]]

[57] McGreevy J. Holographic duality with a view toward many-body physics. Adv High Energy Phys, 2010, 2010: 723105. [arXiv:0909.0518 [hep-th]]

[58] Casalderrey-Solana J, Liu H, Mateos D, et al. Gauge/String duality, hot QCD and heavy ion collisions. [arXiv: 1101.0618 [hep-th]]

[59] Adams A, Carr L D, Sch f er T, et al. Strongly correlated quantum fluids: Ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality. New J, Phys, 2012, 14: 115009. [arXiv:1205.5180 [hep-th]]

[60] Sachdev S.What can gauge-gravity duality teach us about condensed matter physics? Ann Rev Condensed Matter Phys, 2012, 3: 9-33. [arXiv: 1108.1197 [cond-mat.str-el]]

[61] Franco S, Garcia-Garcia A, Rodriguez-Gomez D. A general class of holographic superconductors. J High Energy Phys, 2010, 1004: 092. [arXiv: 0906.1214 [hep-th]]

[62] Aprile F, Russo J G. Models of holographic superconductivity. Phys Rev D, 2010, 81: 026009. [arXiv: 0912.0480 [hep-th]]

[63] Aprile F, Franco S, Rodriguez-Gomez D, et al. Phenomenological models of holographic superconductors and hall currents. J High Energy Phys, 2010, 1005: 102. [arXiv: 1003.4487 [hep-th]]

[64] Liu Y, Sun Y W. Holographic superconductors from einsteinmaxwell- dilaton gravity. J High Energy Phys, 2010, 1007: 099. [arXiv: 1006.2726 [hep-th]]

[65] Chen S, Pan Q, Jing J. Holographic superconductor models in the non-minimal derivative coupling theory. Chin Phys B, 2012, 21:040403. [arXiv: 1012.3820 [gr-qc]]

[66] Peng Y, Pan Q, Wang B. Various types of phase transitions in the AdS soliton background. Phys Lett B, 2011, 699: 383-387. [arXiv:1104.2478 [hep-th]]

[67] Bigazzi F, Cotrone A L, Musso D, et al. Unbalanced holographic superconductors and spintronics. J High Energy Phys, 2012, 1202: 078. [arXiv: 1111.6601 [hep-th]]

[68] Dey A, Mahapatra S, Sarkar T. Generalized holographic superconductors with higher derivative couplings. J High Energy Phys, 2014,1406: 147. [arXiv: 1404.2190 [hep-th]]

[69] Arean D, Tarrio J. Bifundamental superfluids from holography. [arXiv: 1501.02804 [hep-th]]

[70] Gubser S S. Breaking an Abelian gauge symmetry near a black hole horizon. Phys Rev D, 2008, 78: 065034. [arXiv: 0801.2977 [hep-th]]

[71] Faulkner T, Horowitz G T, Roberts M M. Holographic quantum criticality from multi-trace deformations. J High Energy Phys, 2011,1104: 051. [arXiv: 1008.1581 [hep-th]]

[72] Horowitz G T, Roberts M M. Holographic superconductors with various condensates. Phys Rev D, 2008, 78: 126008. [arXiv: 0810.1077 [hep-th]]

[73] Horowitz G T, Roberts M M. Zero temperature limit of holographic superconductors. J High Energy Phys, 2009, 0911: 015. [arXiv:0908.3677 [hep-th]]

[74] Maeda K, Okamura T. Characteristic length of an AdS/CFT superconductor. Phys Rev D, 2008, 78: 106006. [arXiv: 0809.3079 [hep-th]]

[75] Maeda K, Natsuume M, Okamura T. Vortex lattice for a holographic superconductor. Phys Rev D, 2010, 81: 026002. [arXiv: 0910.4475 [hep-th]]

[76] Faulkner T, Horowitz G T, McGreevy J, et al. Photoemission ‘experiments' on holographic superconductors. J High Energy Phys, 2010,1003: 121. [arXiv: 0911.3402 [hep-th]]

[77] Bagrov A, Meszena B, Schalm K. Pairing induced superconductivity in holography. J High Energy Phys, 2014, 1409: 106. [arXiv:1403.3699 [hep-th]]

[78] Horowitz G T, Way B. Complete phase diagrams for a holographic superconductor/insulator system. J High Energy Phys, 2010, 1011:011. [arXiv: 1007.3714 [hep-th]]

[79] Cai R G, He S, Li L, et al. Holographic entanglement entropy in insulator/ superconductor transition. J High Energy Phys, 2012, 1207:088. [arXiv: 1203.6620 [hep-th]]

[80] Cai R G, He S, Li L, et al. Entanglement entropy and wilson loop in St&c#250;kelberg holographic insulator/superconductor model. J High Energy Phys, 2012, 1210: 107. [arXiv: 1209.1019 [hep-th]]

[81] Yao W, Jing J. Holographic entanglement entropy in insulator/ superconductor transition with Born-Infeld electrodynamics. J High Energy Phys, 2014, 1405: 058. [arXiv: 1401.6505 [hep-th]]

[82] Basu P, He J,Mukherjee A, et al. Hard-gapped holographic superconductors. Phys Lett B, 2010, 689: 45-50. [arXiv: 0911.4999 [hep-th]]

[83] Roberts M M, Hartnoll S A. Pseudogap and time reversal breaking in a holographic superconductor. J High Energy Phys, 2008, 0808: 035. [arXiv: 0805.3898 [hep-th]]

[84] Akhavan A, Alishahiha M. P-wave holographic insulator/ superconductor phase transition. Phys Rev D, 2011, 83:086003. [arXiv: 1011.6158 [hep-th]]

[85] Ammon M, Erdmenger J, Kerner P, et al. Black hole instability induced by a magnetic field. Phys Lett B, 2011, 706: 94-99. [arXiv:1106.4551 [hep-th]]

[86] Bu Y-Y, Erdmenger J, Shock J P, et al. Magnetic field induced lattice ground states from holography. J High Energy Phys, 2013, 1303:165. [arXiv: 1210.6669 [hep-th]]

[87] Ammon M, Erdmenger J, Kaminski M, et al. Superconductivity from gauge/gravity duality with flavor. Phys Lett B, 2009, 680: 516-520. [arXiv: 0810.2316 [hep-th]]

[88] Basu P, He J, Mukherjee A, et al. Superconductivity from D3/D7: Holographic pion superfluid. J High Energy Phys, 2009, 0911: 070. [arXiv: 0810.3970 [hep-th]]

[89] Ammon M, Erdmenger J, Kaminski M, et al. Flavor superconductivity from gauge/gravity duality. J High Energy Phys, 2009, 0910: 067. [arXiv: 0903.1864 [hep-th]]

[90] Ammon M, Erdmenger J, Grass V, et al. On holographic p-wave superfluids with back-reaction. Phys Lett B, 2010, 686: 192-198. [arXiv: 0912.3515 [hep-th]]

[91] Cai R-G, Nie Z-Y, Zhang H-Q. Holographic phase transitions of pwave superconductors in Gauss-Bonnet gravity with back-reaction. Phys Rev D, 2011, 83: 066013. [arXiv: 1012.5559 [hep-th]]

[92] Cai R-G, Nie Z-Y, Zhang H-Q. Holographic p-wave superconductors from Gauss-Bonnet gravity. Phys Rev D, 2010, 82: 066007. [arXiv:1007.3321 [hep-th]]

[93] Pando Zayas L A, Reichmann D. A holographic chiral px + ipy superconductor. Phys Rev D, 2012, 85: 106012. [arXiv: 1108.4022 [hep-th]]

[94] Cai R-G, He S, Li L, et al. Holographic entanglement entropy on p-wave superconductor phase transition. J High Energy Phys, 2012,1207: 027. [arXiv: 1204.5962 [hep-th]]

[95] Arias R E, Landea I S. Backreacting p-wave superconductors. J High Energy Phys, 2013, 1301: 157. [arXiv: 1210.6823 [hep-th]]

[96] Cai R-G, Li L, Li L-F, et al. Entanglement entropy in holographic p-wave superconductor/insulator model. J High Energy Phys, 2013,1306: 063. [arXiv: 1303.4828 [hep-th]]

[97] Djukanovic D, Schindler M R, Gegelia J, et al. Quantum electrodynamics for vector mesons. Phys Rev Lett, 2005, 95: 012001. [arXiv: hep-ph/0505180]

[98] Young J A, Bludman S A. Electromagnetic properties of a charged vector meson. Phys Rev, 1963, 131: 2326-2334

[99] Mark Rasolt. Superconductivity in high magnetic fields. Phys Rev Lett, 1987, 58: 1482

[100] Rasolt M, Tesanovic Z. Theoretical aspects of superconductivity in very high magnetic fields. Rev Mod Phys, 1992, 64: 709-754

[101] Levy F, Sheikin I, Grenier B, et al. Magnetic field-induced superconductivity in the ferromagnet URhGe. Science, 2005, 309: 1343-1346

[102] Uji S, Shinagawa H, Terashima T, et al. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature,2010, 410: 908-910

[103] Cai R G, Li L, Li L F, et al. Vector condensate and AdS soliton instability induced by a magnetic field. J High Energy Phys, 2014, 1401:045. [arXiv: 1311.7578 [hep-th]]

[104] Chernodub M N. Superconductivity of QCD vacuum in strong magnetic field. Phys Rev D, 2010, 82: 085011. [arXiv: 1008.1055 [hepph]]

[105] Chernodub M N. Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu- Jona-Lasinio model. Phys Rev Lett, 2011, 106: 142003. [arXiv:1101.0117 [hep-ph]]

[106] Cai R-G, Li L, Li L-F, et al. Towards complete phase diagrams of a holographic p-wave superconductor model. J High Energy Phys,2014, 1404: 016. [arXiv: 1401.3974 [gr-qc]]

[107] Maslov V P. Zeroth-order phase transitions. Mathematical Notes,2004, 76: 697-710

[108] Zeng H B. Possible anderson localization in a holographic superconductor. Phys Rev D, 2013, 88: 126004. [arXiv: 1310.5753 [hep-th]]

[109] Zeng H B, Zhang H Q. Zeroth order phase transition in a holographic superconductor with single impurity. arXiv: 1411.3955 [hep-th]

[110] Chaturvedi P, Sengupta G. P-wave holographic superconductors from born-infeld black holes. arXiv: 1501.06998 [hep-th]

[111] Kordyuk A A. Iron-based superconductors: Magnetism, superconductivity, and electronic structure. Low Temp Phys, 2012, 38: 888-899

[112] Chubukov A. Pairing mechanism in Fe-based superconductors. Annu Rev Condens Matter Phys, 2012, 3: 57-92

[113] Yuan H Q, Grosche F M, Deppe M, et al. Observation of two distinct superconducting phases in CeCu2Si2. Science, 2003, 302: 2104-2107

[114] Fulde P, Ferrell R A. Superconductivity in a strong spin-exchange field. Phys Rev A, 1964, 135: 550-563

[115] larkin A I, Ovchinnikov Y N. Nonuniform state of superconductors. Zh Eksp Teor Fiz, 1964, 47: 1136-1146. [Sov Phys JETP, 1965, 20:762]

[116] Donos A, Gauntlett J P, Pantelidou C. Competing p-wave orders. Class Quant Grav, 2014, 31: 055007. [arXiv: 1310.5741 [hep-th]]

[117] Hirschfeld P J, Putikka W O, Scalapino D J. Microwave conductivity of d-wave superconductors. Phys Rev Lett, 1993, 71: 3705

[118] Benini F, Herzog C P, Yarom A. Holographic Fermi arcs and a d-wave gap. Phys Lett B, 2011, 701: 626-629. [arXiv: 1006.0731 [hep-th]]

[119] Chen J W, Liu Y S, Maity D. d + id holographic superconductors. J High Energy Phys 2011, 1105: 032. [arXiv: 1103.1714 [hep-th]]

[120] Kim K -Y, Taylor M. Holographic d-wave superconductors. J High Energy Phys, 2013, 1308: 112. [arXiv: 1304.6729 [hep-th]]

[121] Norman M R. The challenge of unconventional superconductivity. Science, 2011, 332: 196-200

[122] Berg E, Fradkin E, Kivelson S A, et al. Striped superconductors: How spin, charge and superconducting orders intertwine in the cuprates. New J Phys, 2009, 11: 115004

[123] Zaanen J. A Modern, but way too short history of the theory of superconductivity at a high temperature. [arXiv: 1012.5461 [condmat. supr-con]]

[124] Cai R G, Li L, Li L F, et al. Competition and coexistence of order parameters in holographic multi-band superconductors. J High Energy Phys, 2013, 1309: 074. [arXiv: 1307.2768 [hep-th]]

[125] Nie Z Y, Cai R G, Gao X, et al. Competition between the s-wave and p-wave superconductivity phases in a holographic model. J High Energy Phys, 2013, 1311: 087. [arXiv: 1309.2204 [hep-th]]

[126] Amado I, Arean D, Jimenez-Alba A, et al. Holographic s+p superconductors. Phys Rev D, 2014, 89: 026009. [arXiv: 1309.5086 [hepth]]

[127] Li L F, Cai R G, Li L, et al. Competition between s-wave order and d-wave order in holographic superconductors. J High Energy Phys,2014, 1408: 164. [arXiv: 1405.0382 [hep-th]]

[128] Nishida M. Phase diagram of a holographic superconductor model with s-wave and d-wave. J High Energy Phys, 2014, 1409: 154. [arXiv: 1403.6070 [hep-th]]

[129] Basu P, He J, Mukherjee A, et al. Competing holographic orders. J High Energy Phys, 2010, 1010: 092. [arXiv: 1007.3480 [hep-th]]

[130] Musso D. Competition/Enhancement of two probe order parameters in the unbalanced holographic superconductor. J High Energy Phys,2013, 1306: 083. [arXiv: 1302.7205 [hep-th]]

[131] Liu Y, Schalm K, Sun Y W, et al. Bose-Fermi competition in holographic metals. J High Energy Phys, 2013, 1310: 064. [arXiv:1307.4572 [hep-th]]

[132] Amoretti A, Braggio A, Maggiore N, et al. Coexistence of two vector order parameters: a holographic model for ferromagnetic superconductivity. J High Energy Phys, 2014, 1401: 054. [arXiv: 1309.5093 [hep-th]]

[133] Wen W Y, Wu M S, Wu S Y. A holographic model of two-band superconductor. Phys Rev D, 2014, 89: 066005. [arXiv: 1309.0488 [hep-th]]

[134] Donos A, Gauntlett J P, Sonner J, et al. Competing orders in Mtheory: Superfluids, stripes and metamagnetism. J High Energy Phys,2013, 1303: 108. [arXiv: 1212.0871 [hep-th]]

[135] Silaev M, Babaev E. Microscopic derivation of two-component Ginzburg-Landau model and conditions of its applicability in twoband systems. Phys Rev B, 2012, 85: 134514. [arXiv: 1110.1593 [cond-mat]]

[136] Shanenko A A, Miloševi? M V, Peeters F M, et al. Extended Ginzburg-Landau formalism for two-band superconductors. Phys Rev Lett, 2011, 106: 047005. [arXiv:1101.0971 [cond-mat.suprcon]]

[137] Vagov A, Shanenko A A, Miloševi? M V, et al. Two-band superconductors: Extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature. Phys Rev B, 2012, 86: 144514. [arXiv: 1207.6297 [cond-mat.supr-con]]

[138] Carlstrom J, Babaev E, Speight M. Type-1.5 superconductivity in multiband systems: Effects of interband couplings. Phys Rev B,2011, 83: 174509. [arXiv: 1009.2196 [cond-mat.supr-con]]

[139] Buzea C, Yamashita T. Review of superconducting properties of MgB2. Supercond Sci Technol, 2001, 14: R115-R146. [arXiv: condmat/0108265 [cond-mat.supr-con]]

[140] Hirschfeld P J, Korshunov M M, Mazin I I. Gap symmetry and structure of Fe-based superconductors. Rep Prog Phys, 2011, 74: 124508. [arXiv: 1106.3712 [cond-mat.supr-con]]

[141] Johnston David C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv Phys, 2010, 59:803-1061. [arXiv: 1005.4392 [cond-mat.supr-con]]

[142] Stewart G R. Superconductivity in iron compounds. Rev Mod Phys,2011, 83: 1589-1652. [arXiv: 1106.1618 [cond-mat.supr-con]]

[143] Nie Z Y, Cai R G, Gao X, et al. Phase transitions in a holographic s+p model with backreaction. [arXiv: 1501.00004 [hep-th]]

[144] Goswami P, Roy B. Axionic superconductivity in three dimensional doped narrow gap semiconductors. Phys Rev B, 2014, 90:041301(R). [arXiv: 1307.3240 [cond-mat.supr-con]]

[145] Lonzarich G G, Saxena S S, Agarwal P, et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature,2000, 406: 587-592

[146] Aoki D, Huxley A, Ressouche E, et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature, 2001, 413: 613-616

[147] Huy N T, Gasparini A, de Nijs D E, et al. Superconductivity on the border of weak itinerant ferromagnetism in UCoGe. Phys Rev Lett,2007, 99: 067006

[148] Pfleiderer C, Uhlarz M, Hayden S M, et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature,2001, 412: 58-61

[149] Uzunov D I. Theory of ferromagnetic unconventional superconductors with spin-triplet electron pairing. [arXiv: 1204.1007v2 [condmat]]

[150] Machida K, Ohmi T. Theory of ferromagnetic superconductivity. Phys Rev Lett, 2001, 86: 850. [arXiv: 0008245 [cond-mat]]

[151] Andriy Nevidomskyy H. Coexistence of ferromagnetism and superconductivity close to a quantum phase transition: The heisenbergto ising-type crossover. Phys Rev Lett, 2005, 94: 097003. [arXiv:0412247 [cond-mat]]

[152] Iqbal N, Liu H, Mezei M, et al. Quantum phase transitions in holographic models of magnetism and superconductors. Phys Rev D,2010, 82: 045002. [arXiv: 1003.0010 [hep-th]]

[153] Cai R-G, Yang R-Q. Paramagnetism-Ferromagnetism phase transition in a dyonic black hole. Phys Rev D, 2014, 90: 081901. [arXiv:1404.2856 [hep-th]]

[154] Cai R G, Yang R Q. Coexistence and competition of ferromagnetism and p-wave superconductivity in holographic model. Phys Rev D,2015, 91: 026001. [arXiv: 1410.5080 [hep-th]]

[155] Cai R G, Yang R Q, Kusmartsev F V. A holographic model for antiferromagnetic quantum phase transition induced by magnetic field. [arXiv: 1501.04481 [hep-th]]

[156] Cai R-G, Zhang Y-Z. Black plane solutions in four-dimensional space-times. Phys Rev D, 1996, 54: 4891-4898. [arXiv: 9609065 [gr-qc]]

[157] Anninos D, Hartnoll S A, Iqbal N. Holography and the Coleman- Mermin-Wagner theorem. Phys Rev D, 2010, 82: 066008. [arXiv:1005.1973 [hep-th]]

[158] Herzog C P, Kovtun P K, Son D T. Holographic model of superfluidity. Phys Rev D, 2009, 79: 066002. [arXiv: 0809.4870 [hep-th]]

[159] Brihaye Y, Hartmann B. Holographic superfluid/fluid/insulator phase transitions in 2+1 dimensions. Phys Rev D, 2011, 83: 126008. [arXiv: 1101.5708 [hep-th]]

[160] Arean D, Bertolini M, Krishnan C, et al. Type IIB holographic superfluid flows. J High Energy Phys, 2011, 1103: 008. [arXiv: 1010.5777 [hep-th]]

[161] Wu Y B, Lu J W, Zhang W X, et al. Holographic p-wave superfluid. Phys Rev D, 2014, 90: 126006. [arXiv: 1410.5243 [hep-th]]

[162] Domenech O, Montull M, Pomarol A, et al. Emergent gauge fields in holographic superconductors. J High Energy Phys, 2010, 1008: 033. [arXiv: 1005.1776 [hep-th]]

[163] Gao X, Kaminski M, Zeng H B, et al. Non-equilibrium field dynamics of an honest holographic superconductor. J High Energy Phys,2012, 1211: 112. [arXiv: 1204.3103 [hep-th]]

[164] Flauger R, Pajer E, Papanikolaou S. A striped holographic superconductor. Phys Rev D, 2011, 83: 064009. [arXiv: 1010.1775 [hep-th]]

[165] Horowitz G T, Santos J E. General relativity and the cuprates. [arXiv:1302.6586 [hep-th]]

[166] Dias Ó J C, Horowitz G T, Iqbal N, et al. Vortices in holographic superfluids and superconductors as conformal defects. J High Energy Phys, 2014, 1404: 096. [arXiv: 1311.3673 [hep-th]]

[167] Zeng H B, Wu J P. Holographic superconductors from the massive gravity. Phys Rev D, 2014, 90: 046001. [arXiv: 1404.5321 [hep-th]]

[168] Koga J I,Maeda K, Tomoda K. Holographic superconductor model in a spatially anisotropic background. Phys Rev D, 2014, 89: 104024. [arXiv: 1401.6501 [hep-th]]

[169] Ling Y, Liu P, Niu C, et al. Holographic superconductor on Q-lattice. [arXiv: 1410.6761 [hep-th]]

[170] Arean D, Farahi A, Pando Zayas L A, et al. Holographic superconductor with disorder. Phys Rev D, 2014, 89: 106003. [arXiv:1308.1920 [hep-th]]

[171] Erdmenger J, Herwerth B, Klug S, et al. S-Wave superconductivity in anisotropic holographic insulators. [arXiv: 1501.07615 [hep-th]]

[172] Kim K Y, Kim K K, Park M. A simple holographic superconductor with momentum relaxation. [arXiv: 1501.00446 [hep-th]]

[173] Horowitz G T, Santos J E,Way B. A holographic josephson junction. Phys Rev Lett, 2011, 106: 221601. [arXiv: 1101.3326 [hep-th]]

[174] Wang Y Q, Liu Y X, Zhao Z H. Holographic josephson junction in3+1 dimensions. [arXiv: 1104.4303 [hep-th]]

[175] Siani M. On inhomogeneous holographic superconductors. [arXiv:1104.4463 [hep-th]]

[176] Wang Y Q, Liu Y X, Zhao Z H. Holographic p-wave josephson junction. [arXiv: 1109.4426 [hep-th]]

[177] Wang Y Q, Liu Y X, Cai R G, et al. Holographic SIS josephson junction. J High Energy Phys, 2012, 1209: 058. [arXiv: 1205.4406 [hep-th]]

[178] Rozali M, Vincart-Emard A. Chiral edge currents in a holographic josephson junction. J High Energy Phys, 2014, 1401: 003. [arXiv:1310.4510 [hep-th]]

[179] Cai R G, Wang Y Q, Zhang H Q. A holographic model of SQUID. J High Energy Phys, 2014, 1401: 039. [arXiv: 1308.5088 [hep-th]]

[180] Takeuchi S. Holographic superconducting quantum interference device. [arXiv: 1309.5641 [hep-th]]

[181] Kiritsis E, Niarchos V. Josephson junctions and AdS/CFT networks. J High Energy Phys, 2011, 1107: 112. [Erratum-ibid, 2011, 1110:095]. [arXiv: 1105.6100 [hep-th]]

[182] Li H F, Li L, Wang Y Q, et al. Non-relativistic josephson junction from holography. J High Energy Phys, 2014, 1412: 099. [arXiv:1410.5578 [hep-th]]

[183] Murata K, Kinoshita S, Tanahashi N. Non-equilibrium condensation process in a holographic superconductor. J High Energy Phys, 2010,1007: 050. [arXiv: 1005.0633 [hep-th]]

[184] Bhaseen M J, Gauntlett J P, Simons B D, et al. Holographic superfluids and the dynamics of symmetry breaking. Phys Rev Lett, 2013,110: 015301. [arXiv: 1207.4194 [hep-th]]

[185] Sonner J, del Campo A, Zurek W H. Universal far-from-equilibrium dynamics of a holographic superconductor. [arXiv: 1406.2329 [hepth]]

[186] Bai X, Lee B H, Li L, et al. Time evolution of entanglement entropy in quenched holographic superconductors. [arXiv: 1412.5500 [hepth]]

[187] Adams A, Chesler P M, Liu H. Holographic vortex liquids and superfluid turbulence. Science, 2013, 341: 368-372. [arXiv: 1212.0281 [hep-th]]

[188] Gao X, Garcia-Garcia A M, Zeng H B, et al. Normal modes and time evolution of a holographic superconductor after a quantum quench. J High Energy Phys 2014, 1406: 019. [arXiv: 1212.1049 [hep-th]]

[189] Li W-J, Tian Y, Zhang H-B. Periodically driven holographic superconductor. J High Energy Phys, 2013, 1307: 030. [arXiv: 1305.1600 [hep-th]]

[190] Garc a -Garc a A M, Zeng H B, Zhang H Q. A thermal quench induces spatial inhomogeneities in a holographic superconductor. J High Energy Phys, 2014, 1407: 096. [arXiv: 1308.5398 [hep-th]]

[191] Chesler PM, Garcia-Garcia AM, Liu H. Far-from-equilibrium coarsening, defect formation, and holography. [arXiv: 1407.1862 [hep-th]]

[192] Du Y, Niu C, Tian Y, et al. Holographic vortex pair annihilation insuperfluid turbulence. [arXiv: 1412.8417 [hep-th]]

[193] Herzog C P. An analytic holographic superconductor. Phys Rev D,2010, 81: 126009. [arXiv: 1003.3278 [hep-th]]

[194] Siopsis G, Therrien J. Analytic calculation of properties of holographic superconductors. J High Enegry Phys, 2010, 1005: 013. [arXiv: 1003.4275 [hep-th]]

[195] Zeng H B, Gao X, Jiang Y, et al. Analytical computation of critical exponents in several holographic superconductors. J High Energy Phys, 2011, 1105: 002. [arXiv: 1012.5564 [hep-th]]

[196] Cai R G, Li H F, Zhang H Q. Analytical studies on holographic insulator/ superconductor phase transitions. Phys Rev D, 2011, 83: 126007. [arXiv: 1103.5568 [hep-th]]

[197] Momeni D, Nakano E, Setare M R, et al. Analytical study of critical magnetic field in a holographic superconductor. Int J Mod Phys A,2013, 28: 1350024. [arXiv: 1108.4340 [hep-th]]

[198] Zeng X X, Liu X M, LiuWB. Analytic treatment on stimulated holographic superconductors. Int J Mod Phys A, 2012, 27: 1250010.

[199] Pan Q, Jing J, Wang B, et al. Analytical study on holographic superconductors with backreactions. J High Energy Phys, 2012, 1206087. [arXiv: 1205.3543 [hep-th]]

[200] Gangopadhyay S, Roychowdhury D. Analytic study of properties of holographic p-wave superconductors. J High Energy Phys, 2012,1208: 104. [arXiv: 1207.5605 [hep-th]]

[201] Huang W H. Analytic study of first-order phase transition in holographic superconductor and superfluid. Int J Mod Phys A, 2013, 28:1350140. [arXiv: 1307.5614 [hep-th]]

[202] Banerjee R, Gangopadhyay S, Roychowdhury D, et al. Holographic s-wave condensate with nonlinear electrodynamics: A nontrivial boundary value problem. Phys Rev D, 2013, 87: 104001. [arXiv:1208.5902 [hep-th]]

[203] Momeni D, Raza M, Myrzakulov R. Analytical coexistence of s, p, s + p phases of a holographic superconductor. [arXiv:1310.1735 [hepth]]

[204] Lu J W, Wu Y B, Qian P, et al. Lifshitz scaling effects on holographic superconductors. Nucl Phys B, 2014, 887: 112-135. [arXiv:1311.2699 [hep-th]]

[205] Horowitz G T, Polchinski J. Gauge/Gravity Duality. In: Oriti D, ed. Approaches to Quantum Gravity. Cambridge: Cambridge University Press, 2006. 169-186. [arXiv: 0602037 [gr-qc]]

[206] Lee S S. A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball. Phys Rev D, 2009, 79: 086006. [arXiv: 0809.3402 [hep-th]]

[207] Liu H, McGreevy J, Vegh D. Non-Fermi liquids from holography. Phys Rev D, 2011, 83: 065029. [arXiv:0903.2477 [hep-th]]

[208] Cubrovic M, Zaanen J, Schalm K. String theory, quantum phase transitions and the emergent fermi-liquid. Science, 2009, 325: 439-444. [arXiv: 0904.1993 [hep-th]]

[209] Faulkner T, Liu H, McGreevy J, et al. Emergent quantum criticality, Fermi surfaces, and AdS(2). Phys Rev D, 2011, 83: 125002. [arXiv:0907.2694 [hep-th]]

[210] Faulkner T, Polchinski J. Semi-holographic fermi liquids. J High Energy Phys, 201, 1106: 012. [arXiv: 1001.5049 [hep-th]]

[211] Davis J L, Kraus P, Shah A. Gravity dual of a quantum hall plateau transition. J High Energy Phys, 2008, 0811: 020. [arXiv: 0809.1876 [hep-th]]

[212] Fujita M, LiW, Ryu S, et al. Fractional quantum hall effect via holography: Chern-simons, edge states, and hierarchy. J High Energy Phys,2009, 0906: 066. [arXiv: 0901.0924 [hep-th]]

[213] Bergman O, Jokela N, Lifschytz G, et al. Quantum hall effect in a holographic model. J High Energy Phys, 2010, 1010: 063. [arXiv:1003.4965 [hep-th]]

[214] Hartnoll S A, Polchinski J, Silverstein E, et al. Towards strange metallic holography. J High Energy Phys, 2010, 1004: 120. [arXiv:0912.1061 [hep-th]]

[215] Faulkner T, Iqbal N, Liu H, et al. From black holes to strange metals. [arXiv: 1003.1728 [hep-th]]

[216] Kim B S, Kiritsis E, Panagopoulos C. Holographic quantum criticality and strange metal transport. New J Phys, 2012, 14: 043045. [arXiv: 1012.3464 [cond-mat.str-el]]

[217] Davison R A, Schalm K, Zaanen J. Holographic duality and the resistivity of strange metals. Phys Rev B, 2014, 89: 245116. [arXiv:1311.2451 [hep-th]]

[218] Hoyos-Badajoz C, Jensen K, Karch A. A holographic fractional topological insulator. Phys Rev D, 2010, 82: 086001. [arXiv: 1007.3253 [hep-th]]

[219] Ryu S, Takayanagi T. Topological insulators and superconductors from string theory. Phys Rev D, 2010, 82: 086014. [arXiv:1007.4234 [hep-th]]

[220] Karch A, Maciejko J, Takayanagi T. Holographic fractional topological insulators in 2+1 and 1+1 dimensions. Phys Rev D, 2010, 82:126003. [arXiv: 1009.2991 [hep-th]]

[221] Fujita M, Harrison S, Karch A, et al. Towards a holographic bosehubbard model. [arXiv: 1411.7899 [hep-th]]

[222] Polchinski J, Strassler M J. Hard scattering and gauge/string duality. Phys Rev Lett, 2002, 88: 031601. [arXiv: 0109174 [hep-th]]

[223] Boschi-Filho H, Braga N R F. QCD/string holographic mapping and glueball mass spectrum. Eur Phys J C, 2004, 32: 529-533. [arXiv:0209080 [hep-th]]

[224] Erlich J, Katz E, Son D T, et al. QCD and a holographic model of hadrons. Phys Rev Lett, 2005, 95: 261602. [arXiv: 0501128 [hepth]]

[225] de Teramond G F, Brodsky S J. Hadronic spectrum of a holographic dual of QCD. Phys Rev Lett, 2005, 94: 201601. [arXiv: 0501022 [hep-th]]

[226] Babington J, Erdmenger J, Evans N J, et al. Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals. Phys Rev D, 2004, 69: 066007. [arXiv: 0306018 [hep-th]]

[227] Kruczenski M, Mateos D, Myers R C, et al. Towards a holographic dual of large N(c) QCD. J High Energy Phys, 2004, 0405: 041. [arXiv: 0311270 [hep-th]]

[228] Gubser S S. Drag force in AdS/CFT. Phys Rev D, 2006, 74: 126005. [arXiv: 0605182 [hep-th]]

[229] Shuryak E, Sin S-J, Zahed I. A gravity dual of RHIC collisions. J Korean Phys Soc, 2007, 50: 384-397. [arXiv: 0511199 [hep-th]]

[230] Gursoy U, Kiritsis E, Mazzanti L, et al. Deconfinement and gluon plasma dynamics in improved holographic QCD. Phys Rev Lett,2008, 101: 181601. [arXiv: 0804.0899 [hep-th]]

[231] Herzog C P. A holographic prediction of the deconfinement temperature. Phys Rev Lett, 2007, 98: 091601. [arXiv: 0608151 [hep-th]]

[232] Colangelo P, Giannuzzi F, Nicotri S. Holography, heavy-quark free energy, and the QCD phase diagram. Phys Rev D, 2011, 83: 035015. [arXiv: 1008.3116 [hep-ph]]

[233] Chen H -Y, Hashimoto K, Matsuura S. Towards a holographic model of color-flavor locking phase. J High Energy Phys, 2010, 1002: 104. [arXiv: 0909.1296 [hep-th]]

[234] Huang M, He S, Yan Q S, et al. Confront holographic QCD with regge trajectories. Eur Phys J C, 2010, 66: 187-196. [arXiv:0710.0988 [hep-ph]]

[235] van der Schee W. Gravitational collisions and the quark-gluon plasma. [arXiv: 1407.1849 [hep-th]]

[236] Bhattacharyya S, Hubeny V E, Minwalla S, et al. Nonlinear fluid dynamics from gravity. J High Energy Phys, 2008, 0802: 045. [arXiv:0712.2456 [hep-th]]

[237] Rangamani M. Gravity and hydrodynamics: Lectures on the fluidgravity correspondence. Class Quant Grav, 2009, 26: 224003. [arXiv:0905.4352 [hep-th]]

[238] Bredberg I, Keeler C, Lysov V, et al. From navier-stokes to einstein. J High Energy Phys, 2012, 1207: 146. [arXiv: 1101.2451 [hep-th]]

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1