Optical manipulation in optofluidic microbubble resonators

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 58, Issue 11: 114206(2015) https://doi.org/10.1007/s11433-015-5721-4

Optical manipulation in optofluidic microbubble resonators

More info
  • ReceivedJun 14, 2015
  • AcceptedJul 9, 2015
  • PublishedSep 25, 2015
PACS numbers

Abstract

An optical manipulation system based on optofluidic microbubble resonators (MBR) is proposed. As the high-Q whispering gallery modes (WGMs) are excited in an MBR, the buildup of the field intensity inside the resonator is large enough to trap nanoscale particles. The optical gradient forces generated by the WGMs with different radial orders are investigated numerically. The negative effect of the resonance detuning induced by the particles is taken into account to investigate the optical gradient forces exerting on the particles. By the stability analysis, the WGMs with high radial orders show a better trapping stability under Brownian motion since most of the optical fields reside within the water core.


Funded by

National Natural Science Foundation of China and the Open Project of State Key Laboratory of Modern Optical Instrumentation(61378080)

China.

Zhejiang University


References

[1] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett, 1986, 11: 288-290 CrossRef Google Scholar

[2] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria. Science, 1987, 235: 1517-1520 CrossRef Google Scholar

[3] Block S M, Goldstein L S B, Schnapp B J. Bead movement by single kinesin molecules studied with optical tweezers. Nature, 1990, 348: 348-352 CrossRef Google Scholar

[4] Erickson D, Serey X, Chena Y F, et al. Nanomanipulation using near field photonics. Lab Chip, 2011, 11: 995-1009 CrossRef Google Scholar

[5] Grujic K, Helleso O G, Hole J P, et al. Sorting of polystyrene microspheres using a Y-branched optical waveguide. Opt Express, 2005, 13: 1-7 CrossRef Google Scholar

[6] Yang A H J, Moore S D, Schmidt B S, et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature, 2009, 457: 71-75 CrossRef Google Scholar

[7] Lin S, Schonbrun E, Crozier K. Optical manipulation with planar silicon microring resonators. Nano Lett, 2010, 10: 2408-2411 CrossRef Google Scholar

[8] Yang A H J, Erickson D. Optofluidic ring resonator switch for optical particle transport. Lab Chip, 2010, 10: 769-774 CrossRef Google Scholar

[9] Cai H, Poon A W. Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator. Opt Lett, 2011, 36: 4257-4259 CrossRef Google Scholar

[10] Zhang W H, Huang L N, Santschi C, et al. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett, 2010, 10: 1006-1011 CrossRef Google Scholar

[11] Arnold S, Keng D, Shopova S I, et al. Whispering gallery mode carousel--A photonic mechanism for enhanced nanoparticle detection. Google Scholar

[12] in biosensing. Opt Express, 2009, 17: 6230–6238. Google Scholar

[13] Yang A H J, Erickson D. Optofluidic ring resonator switch for optical particle transport. Lab Chip, 2010, 10: 769-774 CrossRef Google Scholar

[14] Cai H, Poon A W. Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator. Opt Lett, 2011, 36: 4257-4259 CrossRef Google Scholar

[15] Sumetsky M, Dulashko Y, Windeler R S. Optical microbubble resonator. Opt Lett, 2010, 35: 898-900 CrossRef Google Scholar

[16] Watkins A, Ward J, Wu Y Q, et al. Single-input spherical microbubble resonator. Opt Lett, 2011, 36: 2113-2115 CrossRef Google Scholar

[17] Berneschi S, Farnesi D, Cosi F, et al. High Q silica microbubble resonators fabricated by arc discharge. Opt Lett, 2011, 36: 3521-3523 CrossRef Google Scholar

[18] Fan X, White I M, Zhu H, et al. Overview of novel integrated optical ring resonator bio/chemical sensors. Proc SPIE, 2007, 6452: 64520M CrossRef Google Scholar

[19] Ward J, Yang Y, Chormaic S N. Highly sensitive temperature measurements with liquid-core microbubble resonators. IEEE Photon Technol Lett, 2013, 25: 2350 CrossRef Google Scholar

[20] Gorodetsky M L, Ilchenko V S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J Opt Soc Am B-Opt Phys, 1999, 16: 147-154 CrossRef Google Scholar

[21] Arnold S, Khoshsima M, Teraoka I. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett, 2003, 28: 272-274 CrossRef Google Scholar

[22] Rubin J T, Deych L. On optical forces in spherical whispering gallery mode resonators. Opt Express, 2011, 19: 22337-22349 CrossRef Google Scholar

[23] Oxborrow M. Traceable 2-D finite element simulation of the whispering gallery modes of axisymmetric elec-tromagnetic resonators. IEEE Trans Microw Theory Tech, 2007, 55: 1209-1218 CrossRef Google Scholar

[24] Yang A H J, Erickson D. Stability analysis of optofluidic transport on solid-core waveguiding structures. Nanotechnology, 2008, 19: 045704 CrossRef Google Scholar

[25] Davis T J. Brownian diffusion of nano-particles in optical traps. Opt Express, 2007, 15: 2702-2712 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1