We report on second harmonic generation (SHG) in on-chip high-
and the Fundamental Research Funds for the Central Universities.
National Key Basic Research Program of China(2014CB921300)
National Natural Science Foundation of China(61275205)
[1]
Xiao Y F, Dong C H, Zou C L, et al, Low-threshold microlaser in a high-
[2] Vollmer F, Arnold S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat Methods, 2008, 5: 591-596 CrossRef Google Scholar
[3] Kippenberg T J, Vahala K J. Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321: 1172-1176 CrossRef Google Scholar
[4] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 2002, 415: 621-623 CrossRef Google Scholar
[5]
Kippenberg
T J,
Spillane
S M,
Vahala
K J.
Kerr-nonlinearity optical parametric oscillation in an ultrahigh-
[6] Alton D J, Stern N P, Aoki T, et al. Strong interactions of single atoms and photons near a dielectric boundary. Nat Phys, 2011, 7: 159-165 CrossRef Google Scholar
[7] Ilchenko V S, Savchenkov A A, Matsko A B, et al. Nonlinear optics and crystalline whispering gallery mode cavities. Phys Rev Lett, 2004, 92: 043903 CrossRef Google Scholar
[8] Fürst J U, Strekalov D V, Elser D, et al. Quantum light from a whispering-gallery-mode disk resonator. Phys Rev Lett, 2011, 106: 113901 CrossRef Google Scholar
[9] F?rtsch M, Fürst J U, Wittmann C, et al. A versatile source of single photons for quantum information processing. Nat Commun, 2013, 4: 1818 CrossRef Google Scholar
[10] K?sters M, Sturman B, Werheit P, et al, Optical cleaning of congruent lithium niobate crystals. Nat Photon, 2009, 3: 510–513. Google Scholar
[11] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon Rev, 2012, 6: 488-503 CrossRef Google Scholar
[12]
Lin
J,
Xu
Y,
Fang
Z, et al.
Fabrication of high-
[13] Wang C, Burek M J, Lin Z, et al. Integrated high quality factor lithium niobate microdisk resonators. Opt Express, 2014, 22: 30924-30933 CrossRef Google Scholar
[14] Wang R, Bhave S A. Free-standing high quality factor thin-film lithium niobate micro-photonic disk resonators. arXiv:1409.6351. Google Scholar
[15] Li Y, Itoh K, Watanabe W, et al. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett, 2001, 26: 1912-1914 CrossRef Google Scholar
[16] Lin J, Xu Y, Song J, et al. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd: Glass substrate by three-dimensional femtosecond laser micromachining. Opt Lett, 2013, 38: 1458-1460 CrossRef Google Scholar
[17] Lin J, Xu Y, Tang J, et al. Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Appl Phys A, 2014, 116: 2019-2023 CrossRef Google Scholar
[18] Fürst J U, Strekalov D V, Elser D, et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys Rev Lett, 2010, 104: 153901 CrossRef Google Scholar
[19] Dumeige Y, Feron P. Whispering-gallery-mode analysis of phase- matched doubly resonant second-harmonic generation. Phys Rev A, 2006, 74: 063804 CrossRef Google Scholar
[20] Wang C, Burek M J, Lin Z, et al. Integrated high quality factor lithium niobate microdisk resonator. Opt Express, 2014, 22: 30924-30933 CrossRef Google Scholar
Figure 1
(Color online)
Figure 2
(Color online) (a), (b) The spectra of pump and generated second harmonic (SH) signals collected from the output port of the fiber taper; (c) optical microscope side view image of the second harmonic emission (the violet light) from the microresonator; (d) SHG conversion efficiency as a function of input pump power.
Figure 3
(Color online) (a) The transmission spectrum of pump laser coupled with the microresonator by fiber taper; (b) the spectrum of second harmonic signal collected by the grating spectrometer (model Du920, Andor); (c) optical microscope side view image of the second harmonic emission from the microresonator; (d) conversion efficiency of SHG as a function of the input pump power.
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1