Oxygen vacancy, a kind of native point defects in ferroelectric ceramics, usually causes an increase of the dielectric loss. Based on experimental observations, it is believed that all of the oxygen vacancies are an unfavorable factor for energy saving. By using molecular dynamics simulations, we show that the increase of coercive and saturated electric fields is due to the difficulty to switch local polarization near an oxygen vacancy, and so that a ferroelectric device has to sustain the rising consumption of energy. The simulation results also uncover how oxygen vacancies influence ferroelectric properties.
National Natural Science Foundation of China(11172024 and 11232013)
National Key Basic Research Program of China(2012CB937500)
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11172024 and 11232013), the National Key Basic Research Program of China (Grant No. 2012CB937500), and the Research Grant Council of the Hong Kong Special Administrative Region, China (Grant No. 9042201 (CityU 11211015)). Computations were supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia, the LNMGrid of the State Key Laboratory of Nonlinear Mechanics and the ScGrid of Supercomputing Center, Computer Network Information Center of the Chinese Academy of Sciences.
[1] Zhang Y., Hong J., Liu B., Fang D.. Nanotechnology, 2010, 21: 015701 CrossRef ADS Google Scholar
[2] Song H. J., Ding T., Zhong X. L., Wang J. B., Li B., Zhang Y., Tan C. B., Zhou Y. C.. RSC Adv., 2014, 4: 60497 CrossRef Google Scholar
[3] Scott J. F.. Science, 2007, 315: 954 CrossRef ADS Google Scholar
[4] Zhang Y., Hong J., Liu B., Fang D.. Nanotechnology, 2009, 20: 405703 CrossRef ADS Google Scholar
[5] D. N. Fang, and J. X. Liu, Fracture Mechanics of Piezoelectric and Ferroelectric Solids (Springer, Berlin, 2012). Google Scholar
[6] Zhang J., Xie K., Wei H., Qin Q., Qi W., Yang L., Ruan C., Wu Y.. Sci Rep, 2014, 4: 7082 CrossRef ADS Google Scholar
[7] Zhang Z., Lu L., Shu C., Wu P.. Appl. Phys. Lett., 2006, 89: 152909 CrossRef ADS Google Scholar
[8] Yang Q., Cao J. X., Zhou Y. C., Zhang Y., Ma Y., Lou X. J.. Appl. Phys. Lett., 2013, 103: 142911 CrossRef ADS Google Scholar
[9] Yang Q., Cao J. X., Ma Y., Zhou Y. C., Jiang L. M., Zhong X. L.. J. Appl. Phys., 2013, 113: 184110 CrossRef ADS Google Scholar
[10] Subramanyam G., Cole M. W., Sun N. X., Kalkur T. S., Sbrockey N. M., Tompa G. S., Guo X., Chen C., Alpay S. P., Rossetti Jr. G. A., Dayal K., Chen L. Q., Schlom D. G.. J. Appl. Phys., 2013, 114: 191301 CrossRef ADS Google Scholar
[11] Lin Y., Feng D. Y., Gao M., Ji Y. D., Jin L. B., Yao G., Liao F. Y., Zhang Y., Chen C. L.. J. Mater. Chem. C, 2015, 3: 3438 CrossRef Google Scholar
[12] Tinte S., Stachiotti M. G., Phillpot S. R., Sepliarsky M., Wolf D., Migoni R. L.. J. Phys.-Condens. Matter, 2004, 16: 3495 CrossRef ADS Google Scholar
[13] Sepliarsky M., Asthagiri A., Phillpot S. R., Stachiotti M. G., Migoni R. L.. Curr. Opin. Solid State Mater. Sci., 2005, 9: 107 CrossRef ADS Google Scholar
[14] Humphrey W., Dalke A., Schulten K.. J. Mol. Graphics, 1996, 14: 33 CrossRef Google Scholar
[15] Smith W., Yong C. W., Rodger P. M.. Mol. Simul., 2002, 28: 385 CrossRef Google Scholar
[16]
S. Nosé, Mol. Phys.
[17] Hoover W. G.. Phys. Rev. A, 1985, 31: 1695 CrossRef ADS Google Scholar
[18] Wolf D., Keblinski P., Phillpot S. R., Eggebrecht J.. J. Chem. Phys., 1999, 110: 8254 CrossRef ADS Google Scholar
[19] Chen Y., Liu B., Ma Y., Zhou Y.. Nucl. Instruments Methods Phys. Res. Sect. B-Beam Interactions Mater. Atoms, 2009, 267: 3090 CrossRef ADS Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1