Following deformation, thermally induced shape memory polymers (SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behaviors of three types of epoxy SMPs with varying curing agent contents were investigated using a molecular dynamics (MD) method. The mechanical properties under uniaxial tension at different temperatures were obtained, and the simulation results compared reasonably with experimental data. In addition, in a thermomechanical cycle, ideal shape memory effects for the three types of SMPs were revealed through the shape frozen and shape recovery responses at low and high temperatures, respectively, indicating that the recovery time is strongly influenced by the ratio of E-51 to 4,4’-Methylenedianiline.
National Natural Science Foundation of China(11272044)
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11272044 and 11023001).
[1] Lendlein A., Kelch S.. Angew. Chem. Int. Edit., 2002, 41: 1 CrossRef Google Scholar
[2] Jiang H., Kelch S., Lendlein A.. Adv. Mater., 2006, 18: 1471 CrossRef Google Scholar
[3] Koerner H., Price G., Pearce N. A., Alexander M., Vaia R. A.. Nat. Mater., 2004, 3: 115 CrossRef Google Scholar
[4] Lendlein A., Jiang H., Jünger O., Langer R.. Nature, 2005, 434: 879 CrossRef Google Scholar
[5] Schmidt A. M.. Macromol. Rapid Comm., 2006, 27: 1168 CrossRef Google Scholar
[6] He Z., Satarkar N., Xie T., Cheng Y. T., Hilt J. Z.. Adv. Mater., 2011, 23: 3192 CrossRef Google Scholar
[7] Huang W. M., Yang B., An L., Li C., Chan Y. S.. Appl. Phys. Lett., 2005, 86: 114105 CrossRef Google Scholar
[8] Jung Y. C., So H. H., Cho J. W.. J. Macromol. Sci. B, 2006, 45: 453 CrossRef Google Scholar
[9] Kim B. K., Lee S. Y., Xu M.. Polymer, 1996, 37: 5781 CrossRef Google Scholar
[10] Pérez-Foullerat D., Hild S., Mücke A., Rieger B.. Macromol. Chem. Phys., 2004, 205: 374 CrossRef Google Scholar
[11]
A. L. Browne, and N. L. Johnson,
[12] Chen S., Hu J., Liu Y., Liem H., Zhu Y., Meng Q.. Polym. Int., 2007, 56: 1128 CrossRef Google Scholar
[13] Gall K., Dunn M. L., Liu Y., Finch D., Lake M., Munshi N. A.. Acta Mater., 2002, 50: 5115 CrossRef Google Scholar
[14] Cho J. W., Kim J. W., Jung Y. C., Goo N. S.. Macromol. Rapid Comm., 2005, 26: 412 CrossRef Google Scholar
[15] Huang W. M.. J. Int. Mat. Syst. Str., 2006, 17: 753 CrossRef Google Scholar
[16] Prima M. A. D., Lesniewski M., Gall K., McDowell D. L., Sanderson T., Campbell D.. Smart Mater. Struct., 2007, 16: 2330 CrossRef Google Scholar
[17] Li Z. F., Wang Z. D.. J. Int. Mat. Syst. Str., 2011, 22: 1605 CrossRef Google Scholar
[18] Wang Z. D., Li Z. F.. Arch. Appl. Mech., 2011, 81: 1667 CrossRef Google Scholar
[19] Rao I., Rajagopal K.. Int. J. Solids Struct., 2001, 38: 1149 CrossRef Google Scholar
[20] Tobushi H., Okumura K., Hayashi S., Ito N.. Mech. Mater., 2001, 33: 545 CrossRef Google Scholar
[21] Chen Y., Lagoudas D.. J. Mech. Phys. Solids, 2008, 56: 1752 CrossRef Google Scholar
[22] Wang Z., Li Z., Wang L., Xiong Z.. J. Appl. Polym. Sci., 2010, 118: 1406 Google Scholar
[23] Lu H., Liu Y., Gou J., Leng J., Du S.. Int. J. Smart Nano Mater., 2010, 1: 2 CrossRef Google Scholar
[24] Liu Y., Gall K., Dunn M. L., Greenberg A. R., Diani J.. Int. J. Plasticity, 2006, 22: 279 CrossRef Google Scholar
[25] Bellin I., Kelch S., Langer R., Lendlein A.. Proc. Natl. Am. Sci., 2006, 103: 18043 CrossRef Google Scholar
[26] Xie T., Xiao X., Cheng Y. T.. Macromol. Rapid Commun., 2009, 30: 1823 CrossRef Google Scholar
[27] Pretsch T.. Smart Mater. Struct., 2010, 19: 427 Google Scholar
[28] Wang Z., Song W., Ke L., Wang Y.. Mater. Lett., 2012, 89: 216 CrossRef Google Scholar
[29] Jang S. S., Goddard W. A., Kalani M. Y. S.. J. Phys. Chem. B, 2007, 111: 1729 CrossRef Google Scholar
[30] Li C., Strachan A.. Polymer, 2011, 52: 2920 CrossRef Google Scholar
[31] Diani J., Gall K.. Smart Mater Struct., 2007, 16: 1575 CrossRef Google Scholar
[32] Ghobadi E., Heuchel M., Kratz K., Lendlein A.. Macromol. Chem. Phys., 2013, 214: 1273 CrossRef Google Scholar
[33] Tupper M., Munshi N., Beavers F., Gall K., Mikuls M., Meink T.. IEEE Proc., 2001, 5: 2541 Google Scholar
[34]
D. Campbell, M. S. Lake, M. R. Scherbarth, E. Nelson, and R. W. Six, in
[35]
C. S. Hazelton, K. R. Gall, E. R. Abrahamson, R. J. Denis, and M. S. Lake, in
[36]
W. Francis, M. S. Lake, K. Mallick, and G. E. Freebury, A. Maji, in
[37] Song W. B., Wang L. L., Wang Z. D.. Mater. Sci. Eng. A-Struct., 2011, 529: 29 CrossRef Google Scholar
[38]
[39] Plimpton S.. J. Comput. Phys., 1995, 117: 1 CrossRef Google Scholar
[40] Sun H.. Macromolecules, 1995, 28: 701 CrossRef Google Scholar
[41] Fan H. B., Yuen M. M. F.. Polymer, 2007, 48: 2174 CrossRef Google Scholar
[42] Wu P., Van der Giessen E.. J. Mech. Phys. Solids., 1993, 41: 427 CrossRef Google Scholar
[43] Wu P., Van der Giessen E.. Mech. Res. Commun., 1992, 19: 427 CrossRef Google Scholar
[44] Yakacki C. M., Shandas R., Lanning C., Rech B., Eckstein A., Gall K.. Biomaterials, 2007, 28: 2255 CrossRef Google Scholar
Figure 1
Molecular structural repeat units for (a) E-51 epoxy and (b) DDM curing agent.
Figure 2
(Color online) Volume of specimens 1# (a), 2# (b), and 3# (c) as a function of temperature. Experimental data taken from ref.
Figure 3
(Color online) (a) Stress-strain curves of
Figure 4
(Color online) End-to-end distance and chain orientation from MD simulations and theoretical predictions.
Figure 5
Interaction energy between chains at different temperatures (specimen 2#).
Figure 6
(Color online) Microstructures of the material (specimen 2#) under elastic (a) and plastic deformations (b) at 300 K.
Figure 7
Snapshots of a representative epoxy SMP (specimen 2#) under uniaxial stretches in the glassy state (
Figure 8
Snapshots of a representative epoxy SMP (specimen 2#) under uniaxial stretches in the rubbery state (
Figure 9
(Color online) Mean square radius of gyration of the three specimens in the glassy (300 K) and rubbery states (500 K).
Figure 10
(Color online) Schematic thermomechanical loading process and the structure evolution for specimens.
Figure 11
(Color online) Evolution of stretch recovery for specimens 1# (a), 2# (b), and 3# (c) at different temperatures.
Specimen |
E-51 |
DDM |
1# |
100 |
15 |
2# |
100 |
17 |
3# |
100 |
19 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1