Quantum position verification in bounded-attack-frequency model

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 59, Issue 11: 110311(2016) https://doi.org/10.1007/s11433-016-0234-0

Quantum position verification in bounded-attack-frequency model

More info
  • ReceivedJun 13, 2016
  • AcceptedAug 8, 2016
  • PublishedSep 18, 2016
PACS numbers

Abstract

In 2011, Buhrman et al. proved that it is impossible to design an unconditionally secure quantum position verification (QPV) protocol if the adversaries are allowed to previously share unlimited entanglements. Afterwards, people started to design secure QPV protocols in practical settings, e.g. the bounded-storage model, where the adversaries' pre-shared entangled resources are supposed to be limited. Here we focus on another practical factor that it is very difficult for the adversaries to perform attack operations with unlimitedly high frequency. Concretely, we present a new kind of QPV protocols, called non-simultaneous QPV. And we prove the security of a specific non-simultaneous QPV protocol with the assumption that the frequency of the adversaries' attack operations is bounded, but no assumptions on their pre-shared entanglements or quantum storage. Actually, in our non-simultaneous protocol, the information whether there comes a signal at present time is also a piece of command. It renders the adversaries ``blind'', that is, they have to execute attack operations with unlimitedly high frequency no matter whether a signal arrives, which implies the non-simultaneous QPV is also secure in the bounded-storage model.


Funded by

National Natural Science Foundation of China(61272057)

National Natural Science Foundation of China(61572081)


Acknowledgment

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61272057 and 61572081) and the Fundamental Research Funds for the Central Universities (Grant No. 106112016CDJXY180001).


References

[1] N. Chandran, V. Goyal, R. Moriarty, and R. Ostrovsky, Position Based Cryptography (Springer, Heidelberg, 2009), pp. 391-407.. Google Scholar

[2] C. H. Bennett, G. Brassard, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, New York, 1984), pp. 175-179.. Google Scholar

[3] Ekert A. K.. Phys. Rev. Lett., 1991, 67: 661 CrossRef Google Scholar

[4] Yin X. R., Ma W. P., Shen D. S., Wang L. L.. Acta Phys. Sin., 2013, 62: 170304 Google Scholar

[5] Jin W., Zheng L. M., Wang F. Q., Liang R. S.. Sci. China Inf. Sci., 2013, 56: 092304 Google Scholar

[6] Zhang C. M., Song X. T., Treeviriyanupab P., Li M., Wang C., Li H. W., Yin Z. Q., Chen W., Han Z. F.. Chin. Sci. Bull., 2014, 59: 2825 CrossRef Google Scholar

[7] J. Wang, K. Cui, C. L. Luo, H. F. Zhang, L. Zhou, T. Y. Chen, H. Liang, and G. Jin, Sci. China Inf. Sci. {\bf 56} 092305 (2013).. Google Scholar

[8] Wang C. Z., Guo H., Ren J. G., Cao Y., Peng C. Z., Liu W. Y.. Sci. China-Phys. Mech. Astron., 2014, 57: 1233 CrossRef Google Scholar

[9] Deng F. G., Long G. L.. Phys. Rev. A, 2003, 68: 042315 CrossRef Google Scholar

[10] Zheng C., Long G. F.. Sci. China-Phys. Mech. Astron., 2014, 57: 1238 CrossRef Google Scholar

[11] Zou X. F., Qiu D. W.. Sci. China-Phys. Mech. Astron., 2014, 57: 1696 CrossRef Google Scholar

[12] Chang Y., Xu C., Zhang S., Yan L.. Chin. Sci. Bull., 2014, 59: 2541 CrossRef Google Scholar

[13] Giovannetti V., Lloyd S., Maccone L.. Phys. Rev. Lett., 2008, 100: 230502 CrossRef Google Scholar

[14] Jakobi M., Simon C., Gisin N., Bancal J. D., Branciard C., Walenta N., Zbinden H.. Phys. Rev. A, 2011, 83: 022301 CrossRef Google Scholar

[15] Gao F., Liu B., Wen Q. Y., Chen H.. Opt. Express, 2012, 20: 17411 CrossRef Google Scholar

[16] Zhang J. L., Guo F. Z., Gao F., Wen Q. Y.. Phys. Rev. A, 2013, 88: 022334 CrossRef Google Scholar

[17] Wei C. Y., Gao F., Wen Q. Y., Wang T. Y.. Sci. Rep., 2014, 4: 7537 CrossRef Google Scholar

[18] Gao F., Liu B., Huang W., Wen Q. Y.. IEEE J. Sel. Top. Quant., 2015, 21: 6600111 Google Scholar

[19] Liu B., Gao F., Huang W., Wen Q. Y.. Sci. China-Phys. Mech. Astron., 2015, 58: 100301 CrossRef Google Scholar

[20] Wei C. Y., Wang T. Y., Gao F.. Phys. Rev. A, 2016, 93: 042318 CrossRef Google Scholar

[21] Liu W. Q., Peng J. Y., Wang C., Cao Z. W., Huang D., Lin D. K., Huang P., Zeng G. H.. Sci. China-Phys. Mech. Astron., 2015, 58: 020301 Google Scholar

[22] Heilmann R., Gr?fe M., Nolte S., Szameit A.. Sci. Bull., 2015, 60: 96 CrossRef Google Scholar

[23] Xu J. S., Li C. F.. Sci. Bull., 2015, 60: 141 CrossRef Google Scholar

[24] Gao F., Fang W., Wen Q. Y.. Sci. China-Phys. Mech. Astron., 2014, 57: 1244 CrossRef Google Scholar

[25] Huang W., Wen Q. Y., Liu B., Gao F., Sun Y.. Sci. China-Phys. Mech. Astron., 2013, 56: 1670 CrossRef Google Scholar

[26] Kent A., Munro W., Spiller T., Beausoleil R.. emphTagging, 2006, systems: US Patent, nr 2006/0022832 Google Scholar

[27] Kent A., Munro B., Spiller T.. Phys. Rev. A, 2011, 84: 012326 CrossRef Google Scholar

[28] N. Chandran, S. Fehr, R. Gelles, V. Goyal, and R. Ostrovsky, arXiv:1005.1750.. Google Scholar

[29] Malaney R. A.. Phys. Rev. A, 2010, 81: 042319 CrossRef Google Scholar

[30] Lau H. K., Lo H. K.. Phys. Rev. A, 2011, 83: 012322 CrossRef Google Scholar

[31] Buhrman H., Chandran N., Fehr S., Gelles R., Goyal V., Ostrovsky R., Schaffner C.. Lecture Notes Comput. Sci., 2011, 6841: 429 CrossRef Google Scholar

[32] Brassard G.. Nature, 2011, 479: 307 CrossRef Google Scholar

[33] Beigi S., K?nig R.. New J. Phys., 2011, 13: 093036 CrossRef Google Scholar

[34] H. Buhrman, S. Fehr, C. Schaffner, and F. Speelman, arXiv:1109.2563v3.. Google Scholar

[35] Qi B., Siopsis G.. Phys. Rev. A, 2015, 91: 042337 CrossRef Google Scholar

[36] A. Kent. Phys. Rev. A {\bf 84}, 022335 (2011).. Google Scholar

[37] Tomamichel M., Fehr S., Kaniewski J., Wehner S.. Lecture Notes Comput. Sci., 2013, 7887: 609 Google Scholar

[38] Unruh D.. Lecture Notes Comput. Sci., 2014, 8617: 1 CrossRef Google Scholar

[39] Makarov V., Anisimov A., Skaar J.. Phys. Rev. A, 2006, 74: 022313 CrossRef Google Scholar

[40] Qi B., Lo H. K., Ma X. F.. Quantum Inf. Comput., 2007, 7: 73 Google Scholar

[41] M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).. Google Scholar

[42] Bergou J. A.. J. Mod. Opt., 2010, 57: 160 CrossRef Google Scholar

[43] Eraerds P., Walenta N., Legre M., Gisin N., Zbinden H.. Physics, 2009, 2009: {\bf 12}, 155 Google Scholar

[44] Tomita A., Yoshino K., Nambu Y., Tajima A., Tanaka A., Takahashi S., Maeda W., Miki S., Wang Z., Fujiwara M., Sasaki M.. Opt. Fiber Tech., 2010, 16: 55 CrossRef Google Scholar

[45] Wang P. X., Long G. L., Li Y. S.. J. Appl. Phys., 2006, 100: 056107 CrossRef Google Scholar

[46] Wei W., Guo H.. Opt. Lett., 2009, 34: 1876 CrossRef Google Scholar

[47] Wang J. M., Xie T. Y., Zhang H. F., Yang D. X.. IEEE Photonics J., 2015, 7: 7100808 Google Scholar

[48] Ishizaka S., Hiroshima T.. Phys. Rev. Lett., 2008, 101: 240501 CrossRef Google Scholar

[49] Ishizaka S., Hiroshima T.. Phys. Rev. A, 2009, 79: 042306 CrossRef Google Scholar

[50] Liu B., Gao F., Huang W., Li D., Wen Q. Y.. Sci. China Inf. Sci., 2015, 58: 112110 Google Scholar

[51] Liu B., Xiao D., Jia H. Y., Liu R. Z.. Quantum Inf. Proc., 2016, 15: 2113 CrossRef Google Scholar

[52] Liu B., Xiao D., Huang W., Song T. T.. Phys. Rev. A, 2016, 93: 036301 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1