High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 8: 084711(2017) https://doi.org/10.1007/s11433-017-9033-9

High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis

More info
  • ReceivedMar 4, 2017
  • AcceptedApr 5, 2017
  • PublishedJun 30, 2017
PACS numbers

Abstract

In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume (main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with $\mathrm{P_NP_M}$ technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1430235, and 11672160).


References

[1] T. J. Barth, and P. O. Frederickson, Higher order solution of the $\mathrm{E}$uler equations on unstructured grids using quadratic reconstruction, AIAA Paper No.90, 0013 (1990). Google Scholar

[2] M. Delanaye, Quadratic reconstruction finite volume schemes on $\mathrm{3D}$ arbitrary unstrtictured polyhedral grids, AIAA Paper No. 99, 3295 (1989). Google Scholar

[3] Ollivier-Gooch C., Van Altena M.. J. Comp. Phys., 2002, 181: 729-752 CrossRef ADS Google Scholar

[4] Ollivier-Gooch C. F.. J. Comp. Phys., 1997, 133: 6-17 CrossRef ADS Google Scholar

[5] Abgrall R.. J. Comp. Phys., 1994, 114: 45-58 CrossRef ADS Google Scholar

[6] Friedrich O.. J. Comp. Phys., 1998, 144: 194-212 CrossRef ADS Google Scholar

[7] Dumbser M., K?ser M.. J. Comp. Phys., 2007, 221: 693-723 CrossRef ADS Google Scholar

[8] Dumbser M., K?ser M., Titarev V. A., Toro E. F.. J. Comp. Phys., 2007, 226: 204-243 CrossRef ADS Google Scholar

[9] Hu C., Shu C. W.. J. Comp. Phys., 1999, 150: 97-127 CrossRef ADS Google Scholar

[10] Li W., Ren Y. X.. Int. J. Numer. Meth. Fluids, 2012, 70: 742-763 CrossRef ADS Google Scholar

[11] Li W., Ren Y. X.. Comp. Fluids, 2014, 96: 368-376 CrossRef Google Scholar

[12] W. H. Reed, T. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Report LA-UR-73-479. Google Scholar

[13] B. Cockburn, C.-W. Shu, $\mathrm{TVB}$ $\mathrm{R}$unge-$\mathrm{K}$utta local projection discontinuous $\mathrm{G}$alerkin finite element method for conservation laws. $\mathrm{II}$. general framework, Mathematics of Computation, 52, 411--435 (1989). Google Scholar

[14] Cockburn B., Lin S. Y., Shu C. W.. J. Comp. Phys., 1989, 84: 90-113 CrossRef ADS Google Scholar

[15] B. Cockburn, S. Hou, C.-W. Shu, The $\mathrm{Runge}$-$\mathrm{Kutta}$ local projection discontinuous $\mathrm{G}$alerkin finite element method for conservation laws. $\mathrm{IV}$. the multidimensional case, Mathematics of Computation, 54, 545--581 (1990). Google Scholar

[16] Cockburn B., Shu C. W.. SIAM J. Numer. Anal., 1998, 35: 2440-2463 CrossRef Google Scholar

[17] Bassi F., Rebay S.. J. Comp. Phys., 1997, 131: 267-279 CrossRef ADS Google Scholar

[18] Wang Z. J.. J. Comp. Phys., 2002, 178: 210-251 CrossRef ADS Google Scholar

[19] Wang Z. J., Liu Y.. J. Comp. Phys., 2002, 179: 665-697 CrossRef ADS Google Scholar

[20] Wang Z. J., Liu Y.. J. Scientific Computing, 2004, 20: 137-157 CrossRef Google Scholar

[21] Wang Z. J., Zhang L., Liu Y.. J. Comp. Phys., 2004, 194: 716-741 CrossRef ADS Google Scholar

[22] M. Dumbser, Arbitrary high order $\mathrm{P_NP_M}$ schemes on unstructured meshes for the compressible $\mathrm{Navier-Stokes}$ equations, Computers & Fluids, 39, 60--76 (2010). Google Scholar

[23] Dumbser M., Zanotti O.. J. Comp. Phys., 2009, 228: 6991-7006 CrossRef ADS arXiv Google Scholar

[24] Zhang L., Wei L., Lixin H., Xiaogang D., Hanxin Z.. J. Comp. Phys., 2012, 231: 1081-1103 CrossRef ADS Google Scholar

[25] Zhang L., Wei L., Lixin H., Xiaogang D., Hanxin Z.. J. Comp. Phys., 2012, 231: 1104-1120 CrossRef ADS Google Scholar

[26] Zhang L., Liu W., He L., Deng X.. Commun. Commut. Phys., 2012, 12: 284-314 CrossRef ADS Google Scholar

[27] L. Zhang, W. Liu, M. Li, X. He, H. Zhang, A class of $\mathrm{DG}$/$\mathrm{FV}$ hybrid schemes for conservation law $\mathrm{IV}$: 2d viscous flows and implicit algorithm for steady cases, Computers & Fluids, 97, 110--125 (2014). Google Scholar

[28] Luo H., Luo L., Nourgaliev R., Mousseau V. A., Dinh N.. J. Comp. Phys., 2010, 229: 6961-6978 CrossRef ADS Google Scholar

[29] Zingg D. W., De Rango S., Nemec M., Pulliam T. H.. J. Comp. Phys., 2000, 160: 683-704 CrossRef ADS Google Scholar

[30] J. Pan, and Y. Ren, High order sub-cell finite volume method in solving hyperbolic conservation laws, in: Proceedings of 22nd AIAA Computational Fluid Dynamics Conference, 2015, p. 2286. Google Scholar

[31] Pan J., Ren Y., Sun Y.. J. Comp. Phys., 2017, 338: 165-198 CrossRef ADS Google Scholar

[32] Roe P. L.. J. Comp. Phys., 1981, 43: 357-372 CrossRef ADS Google Scholar

[33] Gottlieb S., Shu C. W., Tadmor E.. SIAM Rev., 2001, 43: 89-112 CrossRef ADS Google Scholar

[34] Hu F. Q., Hussaini M. Y., Rasetarinera P.. J. Comp. Phys., 1999, 151: 921-946 CrossRef ADS Google Scholar

[35] Lele S. K.. J. Comp. Phys., 1992, 103: 16-42 CrossRef ADS Google Scholar

[36] Van den Abeele K., Broeckhoven T., Lacor C.. J. Comp. Phys., 2007, 224: 616-636 CrossRef ADS Google Scholar

[37] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Springer, 1998. Google Scholar

[38] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted $\mathrm{ENO}$ schemes., Tech. rep., DTIC Document (1995). Google Scholar

[39] Sod G. A.. J. Comp. Phys., 1978, 27: 1-31 CrossRef ADS Google Scholar

[40] Lax P. D.. Comm. Pure Appl. Math., 1954, 7: 159-193 CrossRef Google Scholar

[41] Woodward P., Colella P.. J. Comp. Phys., 1984, 54: 115-173 CrossRef ADS Google Scholar

[42] Shu C. W., Osher S.. J. Comp. Phys., 1988, 77: 439-471 CrossRef ADS Google Scholar

  • Figure 1

    Illustration for sub-cells of a main-cell.

  • Figure 2

    Stencils (grey part) of the SCFV schemes. (a) S2T4P2 and S2T4P3 scheme; (b) S3T5P3 and S3T5P4 scheme.

  • Figure 3

    Illustration for the flux point of a SCFV scheme.

  • Figure 4

    Dispersion and dissipation properties of the third order S2T4P2 SCFV schemes, with upwind flux. (a) Dispersion relation; (b) relative dispersion error; (c) dissipation relation; (d) enlargement of dissipation error.

  • Figure 5

    Dispersion and dissipation properties of fourth order S2T4P3 and S3T5P3 SCFV scheme, with upwind flux. (a) Dispersion relation; (b) relative dispersion error; (c) dissipation relation; (d) enlargement of dissipation error.

  • Figure 6

    Dispersion and dissipation properties of the S2T4P2 type-2 scheme and the S3T5P3 type-2 scheme (do not recover the conservation on each sub-cell), uniformly partitioned, upwind flux. (a) Dispersion relation; (c) dissipation relation.

  • Figure 7

    Dissipation properties of SV schemes and S3T5P3 schemes on meshes with non-uniform sub-cell partition, with upwind flux.

  • Figure 8

    Thin lines in (a): contours for the magnitude of the amplification factor $G(Z)$ for the third order SSP Runge-Kutta method; thin lines in (b) and (c): contours for the magnitude of the amplification factor $G(Z)$ for the fourth order SSP Runge-Kutta method; thick line in (a): track of $Z = -I\sigma \kappa'$ for the S2T4P2 scheme with weight parameter $\gamma=3.0$ under the CFL number $\sigma = 0.573$; thick line in (b): track of $Z = -I\sigma \kappa'$ for the S2T4P3 scheme under the CFL number $\sigma = 0.783$; thick line in (c): track of $Z = -I \sigma \kappa'$ for the S3T5P3 scheme with uniformly partitioned sub-cells and the weight parameter $\gamma = 3$ under the CFL number $\sigma = 0.434$.

  • Figure 9

    Illustration of the secondary reconstruction procedure. The solid lines are primary reconstruction polynomials for each main cell; the dashed lines are secondary reconstruction polynomials extended to $\mathrm{CV}_i$ from two neighboring main cells. (a) Smooth region; (b) near discontinuity.

  • Figure 10

    Comparison of the error for the SCFV schemes and the corresponding order $k$-exact FV schemes. (a) L2 error vs. 1/$h$, with $u_0 (x)=\mathrm{sin}(\pi x)$; (b) L2 error vs. CPU time, with $u_0 (x)=\mathrm{sin}(\pi x)$; (c) L2 error vs. 1/$h$, with $u_0 (x)=\mathrm{sin}^4(\pi x)$; (d) L2 error vs. time, with $u_0 (x)=\mathrm{sin}^4(\pi x)$.

  • Figure 11

    Solution for linear advection problems at $t=16$ using CFL number $\sigma = 0.4$. S2T4P2, with $\gamma=3.00$ and $\lambda_0=100$.

  • Figure 12

    Solution for linear advection problems at $t=16$ using CFL number $\sigma = 0.4$. S2T4P3 with $\lambda_0=100$.

  • Figure 13

    Numerical results for Sod problem at time 0.25 with CFL number $\sigma = 0.4$. $h=1/100$. (a) Third order S2T4P2 scheme, with $\gamma=3.00$ and $\lambda_0=100$; (b) fourth order S2T4P3 scheme, with $\lambda_0=100$.

  • Figure 14

    Numerical results for Lax problem at time 0.1 with CFL number $\sigma = 0.4$. $h=1/200$. (a) Third order S2T4P2 scheme, with $\gamma=3.00$ and $\lambda_0=100$; (b) fourth order S2T4P3 scheme, with $\lambda_0=100$.

  • Figure 15

    The density distribution for Shu-Osher problem at $t=1.8$ with CFL number $\sigma = 0.4$. Square: S2T4P2 scheme with $\gamma=3.00$ and $\lambda_0=100$, $h=1/20$; triangle: fourth order S2T4P3 scheme, with $\lambda_0=100$, $h=1/20$; the solid line: fifth order WENO scheme with $h=1/500$. (a) Density solutions; (b) enlargement of density solutions.

  • Figure 16

    The density distribution for two interaction blast waves at $t=0.038$ with CFL number $\sigma = 0.4$. Square: S2T4P2 scheme with $\gamma=3.00$ and $\lambda_0=100$, $h=1/200$; triangle: fourth order S2T4P3 scheme, with $\lambda_0=1000$, $h=1/200$; the solid line: fifth order WENO scheme with $h$=1/2000.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1