Hydraulic fracture (HF) in porous rocks is a complex multi-physics
coupling process which involves fluid flow, diffusion and solid deformation.
In this paper, the extended finite element method (XFEM) coupling
with Biot theory is developed to study the HF in permeable rocks with
natural fractures (NFs). In the recent XFEM based computational HF
models, the fluid flow in fractures and interstitials of the porous
media are mostly solved separately, which brings difficulties in dealing
with complex fracture morphology. In our new model the fluid flow
is solved in a unified framework by considering the fractures as a
kind of special porous media and introducing Poiseuille-type flow
inside them instead of Darcy-type flow. The most advantage is that
it is very convenient to deal with fluid flow inside the complex fracture
network, which is important in shale gas extraction. The weak formulation
for the new coupled model is derived based on virtual work principle,
which includes the XFEM formulation for multiple fractures and fractures
intersection in porous media and finite element formulation for the
unified fluid flow. Then the plane strain Kristianovic-Geertsma-de
Klerk (KGD) model and the fluid flow inside the fracture network are
simulated to validate the accuracy and applicability of this method.
The numerical results show that large injection rate, low rock permeability
and isotropic
Key Project of the National Natural Science Foundation of China(11532008)
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11532008, and 11372157).
[1] Ba?ant Z. P., Salviato M., Chau V. T., Visnawathan H., Zubelewicz A.. J. Appl. Mech., 2014, 81: 101010 CrossRef ADS Google Scholar
[2] Perkins T. K., Kern L. R.. J. Pet. Tech., 1961, 13: 937 CrossRef Google Scholar
[3] Geertsma J., De Klerk F.. J. Pet. Tech., 1969, 21: 1571 CrossRef Google Scholar
[4] Settari A., Cleary M. P.. SPE Prod. Eng., 1986, 1: 449 CrossRef Google Scholar
[5] de Borst R.. Mech. Res. Commun., 2017, 80: 47 CrossRef Google Scholar
[6] Dong C. Y., de Pater C. J.. Comp. Methods Appl. Mech. Eng., 2001, 191: 745 CrossRef ADS Google Scholar
[7] Hunsweck M. J., Shen Y., Lew A. J.. Int. J. Numer. Anal. Meth. Geomech., 2013, 37: 993 CrossRef ADS Google Scholar
[8] Chen Z., Bunger A. P., Zhang X., Jeffrey R. G.. Acta Mech. Solid Sin., 2009, 22: 443 CrossRef Google Scholar
[9]
M.W. McClure, and R.N. Horne,
[10] Miehe C., Mauthe S., Teichtmeister S.. J. Mech. Phys. Solids, 2015, 82: 186 CrossRef ADS Google Scholar
[11] Lecampion B.. Commun. Numer. Meth. Engng., 2009, 25: 121 CrossRef Google Scholar
[12] Xu D. D., Liu Z. L., Zhuang Z.. Sci. China-Phys. Mech. Astron., 2016, 59: 124631 CrossRef ADS Google Scholar
[13] Yue Z. Q., Xiao H. T., Tham L. G., Lee C. F., Pan E.. Comput. Mech., 2005, 36: 459 CrossRef ADS Google Scholar
[14] Mo?s N., Belytschko T.. Eng. Fract. Mech., 2002, 69: 813 CrossRef Google Scholar
[15] Chen Z.. J. Pet. Sci. Eng., 2012, 88-89: 136 CrossRef Google Scholar
[16] Boone T. J., Ingraffea A. R.. Int. J. Numer. Anal. Methods Geomech., 1990, 14: 27 CrossRef ADS Google Scholar
[17] Mohammadnejad T., Khoei A. R.. Finite Elem. Anal. Des., 2013, 73: 77 CrossRef Google Scholar
[18] Carrier B., Granet S.. Eng. Fract. Mech., 2012, 79: 312 CrossRef Google Scholar
[19] Salehi S., Nygaard R.. J. Energ. Resour. Technol., 2015, 137: 012903 CrossRef Google Scholar
[20] Wilson Z. A., Landis C. M.. J. Mech. Phys. Solids, 2016, 96: 264 CrossRef ADS Google Scholar
[21]
K. Terzaghi,
[22] Biot M. A.. J. Appl. Phys., 1941, 12: 155 CrossRef ADS Google Scholar
[23]
O. Coussy,
[24]
E. Detournay, and H. D. C. Alexander,
[25]
W. Ehlers,
[26] Zeng Q., Liu Z., Xu D., Wang H., Zhuang Z.. Int. J. Numer. Meth. Eng., 2016, 106: 1018 CrossRef ADS Google Scholar
[27] Xu D., Liu Z., Liu X., Zeng Q., Zhuang Z.. Comput. Mech., 2014, 54: 489 CrossRef ADS Google Scholar
[28]
Z. Zhuang, Z. L. Liu, B. B. Cheng, and J. H. Liao,
[29] Zeng Q. L., Liu Z. L., Xu D. D., Zhuang Z.. Sci. China Technol. Sci., 2014, 57: 1276 CrossRef Google Scholar
[30] Faivre M., Paul B., Golfier F., Giot R., Massin P., Colombo D.. Eng. Fract. Mech., 2016, 159: 115 CrossRef Google Scholar
[31] Salimzadeh S., Khalili N.. Comp. Geotech., 2015, 69: 82 CrossRef Google Scholar
[32] Gordeliy E., Peirce A.. Comp. Methods Appl. Mech. Eng., 2015, 283: 474 CrossRef ADS Google Scholar
[33] Mohammadnejad T., Khoei A. R.. Int. J. Numer. Anal. Meth. Geomech., 2013, 37: 1247 CrossRef ADS Google Scholar
[34] Gordeliy E., Peirce A.. Comp. Methods Appl. Mech. Eng., 2013, 253: 305 CrossRef Google Scholar
[35]
H. Ziegler,
[36] Biot M. A., Drucker D. C.. J. Appl. Mech., 1965, 32: 957 CrossRef ADS Google Scholar
[37]
P. M. Adler, J. F. Thovert, and V. V. Mourzenko,
[38] Adachi J., Siebrits E., Peirce A., Desroches J.. Int. J. Rock Mech. Min. Sci., 2007, 44: 739 CrossRef Google Scholar
[39] Gupta P., Duarte C. A.. Int. J. Numer. Anal. Meth. Geomech., 2016, 40: 1402 CrossRef ADS Google Scholar
[40] Réthoré J., de Borst R., Abellan M. A.. Comput. Mech., 2008, 42: 227 CrossRef ADS Google Scholar
[41] Khoei A. R., Vahab M., Hirmand M.. Int. J. Fract., 2016, 197: 1 CrossRef Google Scholar
[42] Khoei A. R., Hirmand M., Vahab M., Bazargan M.. Int. J. Numer. Meth. Eng., 2015, 104: 439 CrossRef ADS Google Scholar
[43] Faivre M., Giot R., Golfier F., Massin P.. Rock Mech. Rock Eng., 2014, 1: 1409 CrossRef Google Scholar
[44] Ren Q. W., Dong Y. W., Yu T. T.. Sci. China Ser. E-Technol. Sci., 2009, 52: 559 CrossRef Google Scholar
[45] Xu D. D., Liu Z. L., Zhuang Z., Zeng Q. L., Wang T.. Sci. China-Phys. Mech. Astron., 2017, 60: 024611 CrossRef ADS Google Scholar
[46]
J. Bear,
[47]
M. K. Hubbert,
[48] Song J. H., Areias P. M. A., Belytschko T.. Int. J. Numer. Meth. Eng., 2006, 67: 868 CrossRef ADS Google Scholar
[49] Hansbo A., Hansbo P.. Comp. Methods Appl. Mech. Eng., 2004, 193: 3523 CrossRef ADS Google Scholar
[50] Zienkiewicz O. C.. Appl. Math. Mech., 1982, 3: 457 CrossRef Google Scholar
[51]
T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary,
[52] Belytschko T., Chen H., Xu J., Zi G.. Int. J. Numer. Meth. Eng., 2003, 58: 1873 CrossRef ADS Google Scholar
[53] Natarajan S., Mahapatra D. R., Bordas S. P. A.. Int. J. Numer. Meth. Eng., 2010, 31: 269 CrossRef Google Scholar
[54] Wan D., Hu D., Natarajan S., Bordas S. P. A., Yang G.. Int. J. Numer. Meth. Engng, 2017, 110: 203 CrossRef ADS Google Scholar
[55] Bordas S. P. A., Rabczuk T., Hung N. X., Nguyen V. P., Natarajan S., Bog T., Quan D. M., Hiep N. V.. Comp. Struct., 2010, 88: 1419 CrossRef Google Scholar
[56] Flanagan D. P., Belytschko T.. Int. J. Numer. Meth. Eng., 1981, 17: 679 CrossRef ADS Google Scholar
[57] Daniel W. J. T., Belytschko T.. Int. J. Numer. Meth. Eng., 2005, 64: 335 CrossRef ADS Google Scholar
[58] Chang J., Xu J., Mutoh Y.. Eng. Fract. Mech., 2006, 73: 1249 CrossRef Google Scholar
[59] Erdogan F., Sih G. C.. J. Basic Eng., 1963, 85: 519 CrossRef Google Scholar
[60] Beuth Jr. J. L., Herakovich C. T.. Theor. Appl. Fract. Mech., 1989, 11: 27 CrossRef Google Scholar
[61] Carloni C., Nobile L.. Fat. Frac. Eng. Mat. Struct., 2005, 28: 825 CrossRef Google Scholar
[62] Detournay E.. Int. J. Geomech., 2004, 4: 35 CrossRef Google Scholar
[63] Hu J., Garagash D. I.. J. Eng. Mech., 2010, 136: 1152 CrossRef Google Scholar
[64] Khoei A. R., Barani O. R., Mofid M.. Int. J. Numer. Anal. Meth. Geomech., 2011, 35: 1160 CrossRef ADS Google Scholar
Figure 1
(Color online) Coupling framework for hydraulic fracture problem,
Figure 2
(Color online) Hydraulic driving fracture. (a) Orientation of normal and tangent vectors of local fracture surface, and the displacement jump vector; the 3D body with hydro-discontinuity represented by initial configuration (b) and current configuration (c).
Figure 3
Decomposition of a fractured element into two elements (a), four elements (b): solid and hollow circles denote the original nodes and additional phantom nodes, respectively.
Figure 4
(Color online) Comparison of the results with analytical solution for the plane strain KGD model with viscosity dominated HF propagation. (a) Fracture opening at injection point; (b) inlet pressure at injection point.
Figure 5
(Color online) Comparison of the results with analytical solution for the plane strain KGD model with toughness dominated HF propagation. (a) Fracture opening at injection point, (b) inlet pressure at injection point.
Figure 6
(Color online) Hydraulically induced fracture driven by fluid injection. (a) Boundary value problem. All the sides are mechanically constrained and are assumed to be permeable (
Figure 7
(Color online) Hydraulically induced fracture driven by fluid injection. (a)-(c) Fracture and fluid pressure
Figure 8
(Color online) Hydraulically induced fracture driven by fluid injection under different media permeability at time
Figure 9
(Color online) (a) Hydraulically fracture network driven by fluid injection at current stage, a bridge plug is set to hydraulically isolate the previously stimulated stages; (b) local fracture network domain consists of HF and NFs for studying, lower side of the domain is the symmetry boundary and the other three sides are mechanically constrained and assumed to be permeable.
Figure 10
(Color online) Inlet fluid pressure of the five NFs over the total injected time.
Figure 11
(Color online) Fracture evolution morphology for fracture network at different times. (a)
Figure 12
(Color online) Fracture network evolution morphology at the same time
Figure 13
(Color online) The propagation length of one main fracture and five NFs under different injection rate.
Figure 14
(Color online) Fracture evolution morphology for fracture network and the fluid pressure contour under different formation conditions. (a) The initial condition and
Figure 15
(Color online) (a) The vertical fracture propagation length and total fracture propagation length (one main fracture and five NFs) vs difference of
Parameter |
Value |
|
17000 |
|
0.2 |
|
1.46 |
|
0.0001 |
Parameter |
Value |
|
255 |
|
0.3 |
|
0.0167 |
|
0.0004 |
|
1.0 |
|
0.358 |
|
1.0 |
|
200 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1