XFEM modeling of hydraulic fracture in porous rocks with natural fractures

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 8: 084612(2017) https://doi.org/10.1007/s11433-017-9037-3

XFEM modeling of hydraulic fracture in porous rocks with natural fractures

More info
  • ReceivedJan 12, 2017
  • AcceptedApr 11, 2017
  • PublishedJun 15, 2017
PACS numbers

Abstract

Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.


Funded by

Key Project of the National Natural Science Foundation of China(11532008)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11532008, and 11372157).


References

[1] Ba?ant Z. P., Salviato M., Chau V. T., Visnawathan H., Zubelewicz A.. J. Appl. Mech., 2014, 81: 101010 CrossRef ADS Google Scholar

[2] Perkins T. K., Kern L. R.. J. Pet. Tech., 1961, 13: 937 CrossRef Google Scholar

[3] Geertsma J., De Klerk F.. J. Pet. Tech., 1969, 21: 1571 CrossRef Google Scholar

[4] Settari A., Cleary M. P.. SPE Prod. Eng., 1986, 1: 449 CrossRef Google Scholar

[5] de Borst R.. Mech. Res. Commun., 2017, 80: 47 CrossRef Google Scholar

[6] Dong C. Y., de Pater C. J.. Comp. Methods Appl. Mech. Eng., 2001, 191: 745 CrossRef ADS Google Scholar

[7] Hunsweck M. J., Shen Y., Lew A. J.. Int. J. Numer. Anal. Meth. Geomech., 2013, 37: 993 CrossRef ADS Google Scholar

[8] Chen Z., Bunger A. P., Zhang X., Jeffrey R. G.. Acta Mech. Solid Sin., 2009, 22: 443 CrossRef Google Scholar

[9] M.W. McClure, and R.N. Horne, Discrete Fracture Network Modeling of Hydraulic Stimulation: Coupling Flow and Geomechanics (Springer Briefs in Earth Sciences, New York, 2013), p. 17. Google Scholar

[10] Miehe C., Mauthe S., Teichtmeister S.. J. Mech. Phys. Solids, 2015, 82: 186 CrossRef ADS Google Scholar

[11] Lecampion B.. Commun. Numer. Meth. Engng., 2009, 25: 121 CrossRef Google Scholar

[12] Xu D. D., Liu Z. L., Zhuang Z.. Sci. China-Phys. Mech. Astron., 2016, 59: 124631 CrossRef ADS Google Scholar

[13] Yue Z. Q., Xiao H. T., Tham L. G., Lee C. F., Pan E.. Comput. Mech., 2005, 36: 459 CrossRef ADS Google Scholar

[14] Mo?s N., Belytschko T.. Eng. Fract. Mech., 2002, 69: 813 CrossRef Google Scholar

[15] Chen Z.. J. Pet. Sci. Eng., 2012, 88-89: 136 CrossRef Google Scholar

[16] Boone T. J., Ingraffea A. R.. Int. J. Numer. Anal. Methods Geomech., 1990, 14: 27 CrossRef ADS Google Scholar

[17] Mohammadnejad T., Khoei A. R.. Finite Elem. Anal. Des., 2013, 73: 77 CrossRef Google Scholar

[18] Carrier B., Granet S.. Eng. Fract. Mech., 2012, 79: 312 CrossRef Google Scholar

[19] Salehi S., Nygaard R.. J. Energ. Resour. Technol., 2015, 137: 012903 CrossRef Google Scholar

[20] Wilson Z. A., Landis C. M.. J. Mech. Phys. Solids, 2016, 96: 264 CrossRef ADS Google Scholar

[21] K. Terzaghi, Erdbaumechanik auf Bodenphysikalischer Grundlage (Deuticke, Wien, 1925), p. 47. Google Scholar

[22] Biot M. A.. J. Appl. Phys., 1941, 12: 155 CrossRef ADS Google Scholar

[23] O. Coussy, Mechanics of Porous Continua (John Wiley & Sons, Hoboken, 1995), p. 15. Google Scholar

[24] E. Detournay, and H. D. C. Alexander, Fundamentals of Poroelasticity (Pergamon Press, C. Fairhurst, 1993), p. 113. Google Scholar

[25] W. Ehlers, Foundations of Multiphasic and Porous Materials (Springer Berlin Heidelberg, Heidelberg, 2002), p. 3. Google Scholar

[26] Zeng Q., Liu Z., Xu D., Wang H., Zhuang Z.. Int. J. Numer. Meth. Eng., 2016, 106: 1018 CrossRef ADS Google Scholar

[27] Xu D., Liu Z., Liu X., Zeng Q., Zhuang Z.. Comput. Mech., 2014, 54: 489 CrossRef ADS Google Scholar

[28] Z. Zhuang, Z. L. Liu, B. B. Cheng, and J. H. Liao, Extended Finite Element Method (Elsevier/Tsinghua University Press, Beijing, 2014), p. 189. Google Scholar

[29] Zeng Q. L., Liu Z. L., Xu D. D., Zhuang Z.. Sci. China Technol. Sci., 2014, 57: 1276 CrossRef Google Scholar

[30] Faivre M., Paul B., Golfier F., Giot R., Massin P., Colombo D.. Eng. Fract. Mech., 2016, 159: 115 CrossRef Google Scholar

[31] Salimzadeh S., Khalili N.. Comp. Geotech., 2015, 69: 82 CrossRef Google Scholar

[32] Gordeliy E., Peirce A.. Comp. Methods Appl. Mech. Eng., 2015, 283: 474 CrossRef ADS Google Scholar

[33] Mohammadnejad T., Khoei A. R.. Int. J. Numer. Anal. Meth. Geomech., 2013, 37: 1247 CrossRef ADS Google Scholar

[34] Gordeliy E., Peirce A.. Comp. Methods Appl. Mech. Eng., 2013, 253: 305 CrossRef Google Scholar

[35] H. Ziegler, Some Extremum Principles in Irreversible Thermodynamics, with Application to Continuum Mechanics (Swiss Federal Institute of Technology, Zürich, 1962), p. 50. Google Scholar

[36] Biot M. A., Drucker D. C.. J. Appl. Mech., 1965, 32: 957 CrossRef ADS Google Scholar

[37] P. M. Adler, J. F. Thovert, and V. V. Mourzenko, Fractured Porous Media (Oxford University Press, Oxford, 2012), p. 50. Google Scholar

[38] Adachi J., Siebrits E., Peirce A., Desroches J.. Int. J. Rock Mech. Min. Sci., 2007, 44: 739 CrossRef Google Scholar

[39] Gupta P., Duarte C. A.. Int. J. Numer. Anal. Meth. Geomech., 2016, 40: 1402 CrossRef ADS Google Scholar

[40] Réthoré J., de Borst R., Abellan M. A.. Comput. Mech., 2008, 42: 227 CrossRef ADS Google Scholar

[41] Khoei A. R., Vahab M., Hirmand M.. Int. J. Fract., 2016, 197: 1 CrossRef Google Scholar

[42] Khoei A. R., Hirmand M., Vahab M., Bazargan M.. Int. J. Numer. Meth. Eng., 2015, 104: 439 CrossRef ADS Google Scholar

[43] Faivre M., Giot R., Golfier F., Massin P.. Rock Mech. Rock Eng., 2014, 1: 1409 CrossRef Google Scholar

[44] Ren Q. W., Dong Y. W., Yu T. T.. Sci. China Ser. E-Technol. Sci., 2009, 52: 559 CrossRef Google Scholar

[45] Xu D. D., Liu Z. L., Zhuang Z., Zeng Q. L., Wang T.. Sci. China-Phys. Mech. Astron., 2017, 60: 024611 CrossRef ADS Google Scholar

[46] J. Bear, Dynamics of Fluids in Porous Media (Courier Corporation, New York, 1972), p. 58. Google Scholar

[47] M. K. Hubbert, The Theory of Groundwater Motion (Columbia University Press, Chicago, 1940), p. 785. Google Scholar

[48] Song J. H., Areias P. M. A., Belytschko T.. Int. J. Numer. Meth. Eng., 2006, 67: 868 CrossRef ADS Google Scholar

[49] Hansbo A., Hansbo P.. Comp. Methods Appl. Mech. Eng., 2004, 193: 3523 CrossRef ADS Google Scholar

[50] Zienkiewicz O. C.. Appl. Math. Mech., 1982, 3: 457 CrossRef Google Scholar

[51] T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, Nonlinear Finite Elements for Continua and Structures (John Wiley & Sons, New Jersey, 2013), p. 649. Google Scholar

[52] Belytschko T., Chen H., Xu J., Zi G.. Int. J. Numer. Meth. Eng., 2003, 58: 1873 CrossRef ADS Google Scholar

[53] Natarajan S., Mahapatra D. R., Bordas S. P. A.. Int. J. Numer. Meth. Eng., 2010, 31: 269 CrossRef Google Scholar

[54] Wan D., Hu D., Natarajan S., Bordas S. P. A., Yang G.. Int. J. Numer. Meth. Engng, 2017, 110: 203 CrossRef ADS Google Scholar

[55] Bordas S. P. A., Rabczuk T., Hung N. X., Nguyen V. P., Natarajan S., Bog T., Quan D. M., Hiep N. V.. Comp. Struct., 2010, 88: 1419 CrossRef Google Scholar

[56] Flanagan D. P., Belytschko T.. Int. J. Numer. Meth. Eng., 1981, 17: 679 CrossRef ADS Google Scholar

[57] Daniel W. J. T., Belytschko T.. Int. J. Numer. Meth. Eng., 2005, 64: 335 CrossRef ADS Google Scholar

[58] Chang J., Xu J., Mutoh Y.. Eng. Fract. Mech., 2006, 73: 1249 CrossRef Google Scholar

[59] Erdogan F., Sih G. C.. J. Basic Eng., 1963, 85: 519 CrossRef Google Scholar

[60] Beuth Jr. J. L., Herakovich C. T.. Theor. Appl. Fract. Mech., 1989, 11: 27 CrossRef Google Scholar

[61] Carloni C., Nobile L.. Fat. Frac. Eng. Mat. Struct., 2005, 28: 825 CrossRef Google Scholar

[62] Detournay E.. Int. J. Geomech., 2004, 4: 35 CrossRef Google Scholar

[63] Hu J., Garagash D. I.. J. Eng. Mech., 2010, 136: 1152 CrossRef Google Scholar

[64] Khoei A. R., Barani O. R., Mofid M.. Int. J. Numer. Anal. Meth. Geomech., 2011, 35: 1160 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Coupling framework for hydraulic fracture problem, fi is the simplification of the signed distance function fi(X) to describe the location of the fracture.

  • Figure 2

    (Color online) Hydraulic driving fracture. (a) Orientation of normal and tangent vectors of local fracture surface, and the displacement jump vector; the 3D body with hydro-discontinuity represented by initial configuration (b) and current configuration (c).

  • Figure 3

    Decomposition of a fractured element into two elements (a), four elements (b): solid and hollow circles denote the original nodes and additional phantom nodes, respectively.

  • Figure 4

    (Color online) Comparison of the results with analytical solution for the plane strain KGD model with viscosity dominated HF propagation. (a) Fracture opening at injection point; (b) inlet pressure at injection point.

  • Figure 5

    (Color online) Comparison of the results with analytical solution for the plane strain KGD model with toughness dominated HF propagation. (a) Fracture opening at injection point, (b) inlet pressure at injection point.

  • Figure 6

    (Color online) Hydraulically induced fracture driven by fluid injection. (a) Boundary value problem. All the sides are mechanically constrained and are assumed to be permeable (p=0?Pa); (b) inlet fluid pressure p in the fracture over total injected time.

  • Figure 7

    (Color online) Hydraulically induced fracture driven by fluid injection. (a)-(c) Fracture and fluid pressure p; fracture opening width w (d) and fluid pressure (e) along fracture at three times t=1, 5, 20?s, respectively.

  • Figure 8

    (Color online) Hydraulically induced fracture driven by fluid injection under different media permeability at time t=5?s. (a)-(c) The permeability of media is 2.0×105, 2.0×104 and 2.0×103 md, respectively.

  • Figure 9

    (Color online) (a) Hydraulically fracture network driven by fluid injection at current stage, a bridge plug is set to hydraulically isolate the previously stimulated stages; (b) local fracture network domain consists of HF and NFs for studying, lower side of the domain is the symmetry boundary and the other three sides are mechanically constrained and assumed to be permeable.

  • Figure 10

    (Color online) Inlet fluid pressure of the five NFs over the total injected time.

  • Figure 11

    (Color online) Fracture evolution morphology for fracture network at different times. (a) t=0?s, (b) t=30?s, (c) t=60?s, (d) t=100?s, respectively.

  • Figure 12

    (Color online) Fracture network evolution morphology at the same time t=100?s with different inlet fluid flow rates. (a) Q0=0.000002 m2/s, (b) Q0=0.00002 m2/s, (c) Q0=0.0002 m2/s, respectively.

  • Figure 13

    (Color online) The propagation length of one main fracture and five NFs under different injection rate.

  • Figure 14

    (Color online) Fracture evolution morphology for fracture network and the fluid pressure contour under different formation conditions. (a) The initial condition and in-situ stress configuration; (b)-(f) the simulation results for different in-situ stresses along x-direction at the same time t=100?s.

  • Figure 15

    (Color online) (a) The vertical fracture propagation length and total fracture propagation length (one main fracture and five NFs) vs difference of in-situ stress; (b) the final length of five NFs (each point represents the fracture tip position of NF) corresponding to five cases in Figure 14(b)-(f).

  • Table 1   Input parameters for KGD model

    Parameter

    Value

    E (MPa)

    17000

    ν

    0.2

    K IC ( MPa m )

    1.46

    Q0 (m2/s)

    0.0001

  • Table 2   Material parameters

    Parameter

    Value

    E (MPa)

    255

    ν

    0.3

    K IC ( MPa m )

    0.0167

    Q0 (m2/s)

    0.0004

    α

    1.0

    ν u

    0.358

    μ (cP)

    1.0

    k (md) (1 md=9.87×10?14 m2)

    200

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1