Anomalous in-plane magnetoresistance of electron-doped cuprate La<sub>2</sub><sub>?</sub><sub><italic>x</italic></sub>Ce<sub><italic>x</italic></sub>CuO<sub>4±</sub><sub><italic>δ</italic></sub>

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 9: 097411(2017) https://doi.org/10.1007/s11433-017-9050-7

Anomalous in-plane magnetoresistance of electron-doped cuprate La2?xCexCuOδ

More info
  • ReceivedMay 1, 2017
  • AcceptedMay 5, 2017
  • PublishedMay 19, 2017
PACS numbers

Abstract

We report systematic in-plane magnetoresistance measurements on the electron-doped cuprate La2?xCexCuOδ thin films as a function of Ce doping and oxygen content in the magnetic field up to 14?T. A crossover from negative to positive magnetoresistance occurs between the doping level x = 0.07 and 0.08. Above x = 0.08, the positive magnetoresistance effect appears, and is almost indiscernible at x = 0.15. By tuning the oxygen content, the as-grown samples show negative magnetoresistance effect, whereas the optimally annealed ones display positive magnetoresistance effect at the doping level x = 0.15. Intriguingly, a linear-field dependence of in-plane magnetoresistance is observed at the underdoping level x = 0.06, the optimal doping level x = 0.1 and slightly overdoping level x = 0.11. These anomalies of in-plane magnetoresistance may be related to the intrinsic inhomogeneity in the cuprates, which is discussed in the framework of network model.


Funded by

National Key Basic Research Program of China(2015CB921000)

and the Key Research Program of Frontier Sciences

National Natural Science Foundation of China(11674374)

Chinese Academy of Sciences(QYZDB-SSW-SLH008)


Acknowledgment

The authors thank Prof. R. L. Greene for fruitful discussions. This work was supported by the National Key Basic Research Program of China (Grant Nos. 2015CB921000, and 2016YFA0300301), the National Natural Science Foundation of China (Grant Nos. 11674374, and 11474338), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH008).


References

[1] Doiron-Leyraud N., Proust C., Leboeuf D., Levallois J., Bonnemaison J. B., Liang R., Bonn D. A., Hardy W. N., Taillefer L.. Nature, 2007, 447: 565 CrossRef ADS arXiv Google Scholar

[2] Vignolle B., Carrington A., Cooper R. A., French M. M. J., MacKenzie A. P., Jaudet C., Vignolles D., Proust C., Hussey N. E.. Nature, 2008, 455: 952 CrossRef ADS Google Scholar

[3] Cooper R. A., Wang Y., Vignolle B., Lipscombe O. J., Hayden S. M., Tanabe Y., Adachi T., Koike Y., Nohara M., Takagi H., Proust C., Hussey N. E.. Science, 2009, 323: 603 CrossRef ADS Google Scholar

[4] Armitage N. P., Fournier P., Greene R. L.. Rev. Mod. Phys., 2010, 82: 2421 CrossRef ADS arXiv Google Scholar

[5] H. Yu, J. Yuan, B. Zhu, and K. Jin, Sci. China-Phys. Mech. Astron. 60, 087421 (2017). Google Scholar

[6] Sekitani T., Naito M., Miura N.. Phys. Rev. B, 2003, 67: 174503 CrossRef ADS Google Scholar

[7] Fournier P., Higgins J., Balci H., Maiser E., Lobb C. J., Greene R. L.. Phys. Rev. B, 2000, 62: R11993 CrossRef ADS Google Scholar

[8] Yuan J., He G., Yang H., Shi Y. J., Zhu B. Y., Jin K.. Sci. China-Phys. Mech. Astron., 2015, 58: 107401 CrossRef ADS Google Scholar

[9] Fournier P., Mohanty P., Maiser E., Darzens S., Venkatesan T., Lobb C. J., Czjzek G., Webb R. A., Greene R. L.. Phys. Rev. Lett., 1998, 81: 4720 CrossRef ADS Google Scholar

[10] Dagan Y., Barr M. C., Fisher W. M., Beck R., Dhakal T., Biswas A., Greene R. L.. Phys. Rev. Lett., 2005, 94: 057005 CrossRef ADS Google Scholar

[11] Dagan Y., Qazilbash M. M., Hill C. P., Kulkarni V. N., Greene R. L.. Phys. Rev. Lett., 2004, 92: 167001 CrossRef ADS Google Scholar

[12] Jin K., Zhang X. H., Bach P., Greene R. L.. Phys. Rev. B, 2009, 80: 012501 CrossRef ADS arXiv Google Scholar

[13] Yu W., Higgins J. S., Bach P., Greene R. L.. Phys. Rev. B, 2007, 76: 020503(R) CrossRef ADS Google Scholar

[14] Wu T., Wang C. H., Wu G., Fang D. F., Luo J. L., Liu G. T., Chen X. H.. J. Phys.-Condens. Matter, 2008, 20: 275226 CrossRef ADS arXiv Google Scholar

[15] Lavrov A. N., Kang H. J., Kurita Y., Suzuki T., Komiya S., Lynn J. W., Lee S. H., Dai P., Ando Y.. Phys. Rev. Lett., 2004, 92: 227003 CrossRef ADS Google Scholar

[16] Sekitani T., Nakagawa H., Miura N., Naito M.. Phys. B-Condens. Matter, 2001, 294-295: 358 CrossRef ADS Google Scholar

[17] Finkelman S., Sachs M., Droulers G., Butch N. P., Paglione J., Bach P., Greene R. L., Dagan Y.. Phys. Rev. B, 2010, 82: 094508 CrossRef ADS arXiv Google Scholar

[18] Zhang X., Yu H., He G., Hu W., Yuan J., Zhu B., Jin K.. Phys. C-Supercond. Appl., 2016, 525-526: 18 CrossRef ADS arXiv Google Scholar

[19] Higgins J. S., Dagan Y., Barr M. C., Weaver B. D., Greene R. L.. Phys. Rev. B, 2006, 73: 104510 CrossRef ADS Google Scholar

[20] Jiang W., Mao S. N., Xi X. X., Jiang X., Peng J. L., Venkatesan T., Lobb C. J., Greene R. L.. Phys. Rev. Lett., 1994, 73: 1291 CrossRef ADS Google Scholar

[21] Xu X. Q., Mao S. N., Jiang W., Peng J. L., Greene R. L.. Phys. Rev. B, 1996, 53: 871 CrossRef ADS Google Scholar

[22] Wilson S. D., Li S., Dai P., Bao W., Chung J. H., Kang H. J., Lee S. H., Komiya S., Ando Y., Si Q.. Phys. Rev. B, 2006, 74: 144514 CrossRef ADS Google Scholar

[23] Li P., Greene R. L.. Phys. Rev. B, 2007, 76: 174512 CrossRef ADS arXiv Google Scholar

[24] Dagan Y., Qazilbash M. M., Greene R. L.. Phys. Rev. Lett., 2005, 94: 187003 CrossRef ADS Google Scholar

[25] Saadaoui H., Salman Z., Luetkens H., Prokscha T., Suter A., Macfarlane W. A., Jiang Y., Jin K., Greene R. L., Morenzoni E., Kiefl R. F.. Nat. Commun., 2015, 6: 6041 CrossRef ADS arXiv Google Scholar

[26] Li P., Balakirev F. F., Greene R. L.. Phys. Rev. Lett., 2007, 99: 047003 CrossRef ADS Google Scholar

[27] Yu H., He G., Lin Z., Kusmartseva A., Yuan J., Zhu B., Yang Y.-F., Xiang T., Li L., Wang J., Kusmartsev F. V., Jin K.. arXiv Google Scholar

[28] Kusmartsev F. V.. Phys. Rev. Lett., 2000, 84: 530 CrossRef ADS Google Scholar

[29] Kusmartsev F. V.. Phys. Rev. Lett., 2000, 84: 5026 CrossRef ADS Google Scholar

[30] F. V. Kusmartsev, J. Phys. 9, 321 (1999). Google Scholar

[31] Fath M.. Science, 1999, 285: 1540 CrossRef Google Scholar

[32] Jin K., Zhu B. Y., Wu B. X., Vanacken J., Moshchalkov V. V., Xu B., Cao L. X., Qiu X. G., Zhao B. R.. Phys. Rev. B, 2008, 77: 172503 CrossRef ADS Google Scholar

[33] Abrikosov A. A.. Phys. Rev. B, 1998, 58: 2788 CrossRef ADS Google Scholar

[34] Parish M. M., Littlewood P. B.. Nature, 2003, 426: 162 CrossRef ADS Google Scholar

[35] Fenton J., Schofield A. J.. Phys. Rev. Lett., 2005, 95: 247201 CrossRef ADS Google Scholar

[36] Breznay N. P., Hayes I. M., Ramshaw B. J., McDonald R. D., Krockenberger Y., Ikeda A., Irie H., Yamamoto H., Analytis J. G.. Phys. Rev. B, 2016, 94: 104514 CrossRef ADS arXiv Google Scholar

[37] Fratini M., Poccia N., Ricci A., Campi G., Burghammer M., Aeppli G., Bianconi A.. Nature, 2010, 466: 841 CrossRef ADS arXiv Google Scholar

[38] Jin K., Zhu B. Y., Wu B. X., Gao L. J., Zhao B. R.. Phys. Rev. B, 2008, 78: 174521 CrossRef ADS Google Scholar

[39] Armitage N. P., Ronning F., Lu D. H., Kim C., Damascelli A., Shen K. M., Feng D. L., Eisaki H., Shen Z. X., Mang P. K., Kaneko N., Greven M., Onose Y., Taguchi Y., Tokura Y.. Phys. Rev. Lett., 2002, 88: 257001 CrossRef ADS Google Scholar

[40] Xu R., Husmann A., Rosenbaum T. F., Saboungi M. L., Enderby J. E., Littlewood P. B.. Nature, 1997, 390: 57 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) The doping dependence of in-plane MR of optimally annealed LCCO in the normal state. In the doping level (a) x = 0.06, (b) x = 0.07, n-MR is observed with variation of magnetic field. At higher doping levels (c) x = 0.08, (d) x = 0.1, (e) x = 0.11 and (f) x = 0.15, p-MR is observed in the case of both B//I and BI.

  • Figure 2

    (Color online) The oxygen dependence of the in-plane MR at the doping level x = 0.15. When the angle θ between the magnetic field and the current is 0, 45° and 90°, (a) the as-grown films all show n-MR with the variation of magnetic field at T = 10?K; (b) the short-annealed films show n-MR behaviors in the low magnetic field but p-MR above 13?T.

  • Figure 3

    (Color online) The linear in-plane MR at the optimal doping level at T = 35?K. When θ = 30°, 45°, 60°, and 90°, the in-plane MR is linear with the magnetic field. The illustration shows the normalization of MR: when the magnetic field was normalized by a sine function of the angle θ, the linear in-plane MR converges onto a single straight line.

  • Figure 4

    (Color online) The phase diagram of the electron-doped cuprate La2?xCexCuO4 achieved by the in-plane MR at T = 35?K. At x = 0.07 and lower doping level, the n-MR is observed. The crossover from n-MR to p-MR occurs between x = 0.07 and 0.08 (marked by the purple dot in the illustration). Above x = 0.08, the p-MR occurs and almost vanishes at the doping level x = 0.15. At the doping levels x = 0.06, x = 0.10 and x = 0.11, the linear-field dependence of MR occurs. The illustration is the temperature-doping phase diagram of La2?xCexCuO4. The boundary of static antiferromagnetic order (gray solid line) is achieved by the low energy μSR (ref. [25]). The green dash line is the boundary of dynamic antiferromagnetic order achieved by the AMR measurements. The light green dash line is the isotherm at 35?K in the phase diagram.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1