Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 9: 094612(2017) https://doi.org/10.1007/s11433-017-9060-3

Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface

More info
  • ReceivedApr 17, 2017
  • AcceptedMay 16, 2017
  • PublishedJul 14, 2017
PACS numbers

Abstract

In this paper, evaporation of sessile water droplets containing fluorescent polystyrene (PS) microparticles on polydimethylsiloxane (PDMS) surfaces with different curing ratios was studied experimentally using laser confocal microscopy. At the beginning, there were some microparticles located at the contact line and some microparticles moved towards the line. Due to contact angle hysteresis, at first both the contact line and the microparticles were pinned. With the depinning contact line, the microparticles moved together spontaneously. Using the software ImageJ, the location of contact lines at different time were acquired and the circle centers and radii of the contact lines were obtained via the least square method. Then the average distance of two neighbor contact lines at a certain time interval was obtained to characterize the motion of the contact line. Fitting the distance-time curve at the depinning contact line stage with polynomials and differentiating the polynomials with time, we obtained the velocity and acceleration of both the contact line and the microparticles located at the line. The velocity and the maximum acceleration were, respectively, of the orders of 1?μm/s and 20-200?nm/s2, indicating that the motion of the microparticles located at the depinning contact line was quasi-static. Finally, we presented a theoretical model to describe the quasi-static process, which may help in understanding both self-pinning and depinning of microparticles.


Funded by

work was supported by the Natural Science Foundation of China(11572114)

CAS strategic priority research program(XDB22040403)

Opening fund of State Key Laboratory of Nonlinear Mechanics(LNM)

CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-JSC019)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11572114, 11572335, and U1562105), the Opening Fund of State Key Laboratory of Nonlinear Mechanics (LNM), the CAS Strategic Priority Research Program (Grant No. XDB22040403), and the CAS Key Research Program of Frontier Sciences (Grant No. QYZDJ-SSW-JSC019).


References

[1] Deegan R. D., Bakajin O., Dupont T. F., Huber G., Nagel S. R., Witten T. A.. Nature, 1997, 389: 827 CrossRef ADS Google Scholar

[2] Hu H., Larson R. G.. J. Phys. Chem. B, 2006, 110: 7090 CrossRef PubMed Google Scholar

[3] Y. P. Zhao, Physical Mechanics of Surfaces and Interfaces (Science Press, Beijing, 2012). Google Scholar

[4] Thiele U.. Adv. Colloid Interf. Sci., 2014, 206: 399 CrossRef PubMed Google Scholar

[5] Yunker P. J., Still T., Lohr M. A., Yodh A. G.. Nature, 2011, 476: 308 CrossRef PubMed ADS Google Scholar

[6] Eral H. B., Augustine D. M., Duits M. H. G., Mugele F.. Soft Matter, 2011, 7: 4954 CrossRef ADS Google Scholar

[7] Mampallil D., Eral H. B., van den Ende D., Mugele F.. Soft Matter, 2012, 8: 10614 CrossRef ADS Google Scholar

[8] Still T., Yunker P. J., Yodh A. G.. Langmuir, 2012, 28: 4984 CrossRef PubMed Google Scholar

[9] Cui L., Zhang J., Zhang X., Huang L., Wang Z., Li Y., Gao H., Zhu S., Wang T., Yang B.. ACS Appl. Mater. Interf., 2012, 4: 2775 CrossRef PubMed Google Scholar

[10] Crivoi A., Duan F.. Langmuir, 2013, 29: 12067 CrossRef PubMed Google Scholar

[11] Majumder M., Rendall C. S., Eukel J. A., Wang J. Y. L., Behabtu N., Pint C. L., Liu T. Y., Orbaek A. W., Mirri F., Nam J., Barron A. R., Hauge R. H., Schmidt H. K., Pasquali M.. J. Phys. Chem. B, 2012, 116: 6536 CrossRef PubMed Google Scholar

[12] Li Y. F., Sheng Y. J., Tsao H. K.. Langmuir, 2013, 29: 7802 CrossRef PubMed Google Scholar

[13] Z. Q. Lin, Evaporative Self-assembly of Ordered Complex Structures (World Scientific Publishing Co. Pte. Ltd., Singapore, 2012). Google Scholar

[14] Weon B. M., Je J. H.. Phys. Rev. E, 2010, 82: 015305 CrossRef PubMed ADS Google Scholar

[15] Jung J., Kim Y. W., Yoo J. Y., Koo J., Kang Y. T.. Anal. Chem., 2010, 82: 784 CrossRef PubMed Google Scholar

[16] Wong T. S., Chen T. H., Shen X., Ho C. M.. Anal. Chem., 2011, 83: 1871 CrossRef PubMed Google Scholar

[17] Chhasatia V. H., Sun Y.. Soft Matter, 2011, 7: 10135 CrossRef ADS Google Scholar

[18] Weon B. M., Je J. H.. Phys. Rev. Lett., 2013, 110: 028303 CrossRef PubMed ADS Google Scholar

[19] Bhardwaj R., Fang X., Somasundaran P., Attinger D.. Langmuir, 2010, 26: 7833 CrossRef PubMed Google Scholar

[20] Yuan Q., Zhao Y. P.. J. Fluid. Mech., 2013, 716: 171 CrossRef ADS Google Scholar

[21] Yuan Q., Huang X., Zhao Y. P.. Phys. Fluids, 2014, 26: 092104 CrossRef ADS Google Scholar

[22] Li Y. Q., Wu H. A., Wang F. C.. Langmuir, 2016, 32: 12676 CrossRef PubMed Google Scholar

[23] Sangani A. S., Lu C., Su K., Schwarz J. A.. Phys. Rev. E, 2009, 80: 011603 CrossRef PubMed ADS Google Scholar

[24] Shao F., Ng T. W., Efthimiadis J., Somers A., Schwalb W.. J. Colloid Interf. Sci., 2012, 377: 421 CrossRef PubMed Google Scholar

[25] Zhao Y.. Theor. Appl. Mech. Lett., 2014, 4: 034002 CrossRef Google Scholar

[26] Zhao Y. P.. Sci. China-Phys. Mech. Astron., 2016, 59: 114631 CrossRef ADS Google Scholar

[27] Wang F. C., Zhao Y. P.. Soft Matter, 2011, 7: 8628 CrossRef ADS Google Scholar

[28] Yu Y. S., Wang Z., Zhao Y. P.. J. Colloid Interf. Sci., 2012, 365: 254 CrossRef PubMed Google Scholar

[29] Lopes M. C., Bonaccurso E.. Soft Matter, 2012, 8: 7875 CrossRef ADS Google Scholar

[30] Yu Y. S., Wang Z. Q., Zhao Y. P.. Acta Mech. Sin., 2013, 29: 799 CrossRef ADS Google Scholar

[31] Lopes M. C., Bonaccurso E.. Soft Matter, 2013, 9: 7942 CrossRef ADS Google Scholar

[32] Chen L., Auernhammer G. K., Bonaccurso E.. Soft Matter, 2011, 7: 9084 CrossRef ADS Google Scholar

[33] Chen L., Bonaccurso E., Shanahan M. E. R.. Langmuir, 2013, 29: 1893 CrossRef PubMed Google Scholar

[34] Zheng X., Kong G. P., Silber-Li Z. H.. Acta Mech. Sin., 2013, 29: 411 CrossRef ADS Google Scholar

[35] Xia X. L., Zheng X., Huang X. F., Zhou J. Z., Yu Y. S.. Appl. Math. Mech, 2017, 8: 495 CrossRef Google Scholar

[36] M. Elimelech, J. Gregory, X. Jia, and R. A. Williams, Particle Deposition & Aggregation (Butterworth Heinemann Publications, Woburn, 1998), pp. 38-46. Google Scholar

[37] Yu Y. S.. AIP Adv., 2016, 6: 095124 CrossRef ADS Google Scholar

[38] Drummond C. J., Chan D. Y. C.. Langmuir, 1997, 13: 3890 CrossRef Google Scholar

[39] Koh A., Gillies G., Gore J., Saunders B. R.. J. Colloid Interf. Sci., 2000, 227: 390 CrossRef PubMed Google Scholar

[40] Nakao A., Suzuki Y., Iwaki M.. J. Colloid Interf. Sci., 1998, 197: 257 CrossRef Google Scholar

[41] Kirby B. J., Hasselbrink E. F.. Electrophoresis, 2004, 25: 203 CrossRef PubMed Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1