Self-error-rejecting photonic qubit transmission in polarization-spatialmodes with linear optical elements

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 12: 120312(2017) https://doi.org/10.1007/s11433-017-9091-0

Self-error-rejecting photonic qubit transmission in polarization-spatialmodes with linear optical elements

More info
  • ReceivedJun 29, 2017
  • AcceptedAug 7, 2017
  • PublishedSep 15, 2017
PACS numbers

Abstract

We present an original self-error-rejecting photonic qubittransmission scheme for both the polarization and spatial states ofphoton systems transmitted over collective noise channels. In ourscheme, we use simple linear-optical elements, including half-waveplates, 50:50 beam splitters, and polarization beam splitters, toconvert spatial-polarization modes into different time bins. Byusing postselection in different time bins, the success probabilityof obtaining the uncorrupted states approaches 1/4 for single-photontransmission, which is not influenced by the coefficients of noisychannels. Our self-error-rejecting transmission scheme can begeneralized to hyperentangled n-photon systems and is useful inpractical high-capacity quantum communications with photon systemsin two degrees of freedom.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61675028, and 11674033), the Fundamental Research Funds for the Central Universities (Grant No. 2015KJJCA01), and the National High Technology Research and Development Program of China (Grant No. 2013AA122902).


References

[1] Bennett C. H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W. K.. Phys. Rev. Lett., 1993, 70: 1895 CrossRef PubMed ADS Google Scholar

[2] Ai Q.. Sci. Bull., 2016, 61: 110 CrossRef Google Scholar

[3] Bennett C. H., Wiesner S. J.. Phys. Rev. Lett., 1992, 69: 2881 CrossRef PubMed ADS Google Scholar

[4] Liu X. S., Long G. L., Tong D. M., Li F.. Phys. Rev. A, 2002, 65: 022304 CrossRef ADS Google Scholar

[5] C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, 1984), p.175. Google Scholar

[6] Ekert A. K.. Phys. Rev. Lett., 1991, 67: 661 CrossRef PubMed ADS Google Scholar

[7] Bennett C. H., Brassard G., Mermin N. D.. Phys. Rev. Lett., 1992, 68: 557 CrossRef PubMed ADS Google Scholar

[8] Li X. H., Deng F. G., Zhou H. Y.. Phys. Rev. A, 2008, 78: 022321 CrossRef ADS arXiv Google Scholar

[9] Hillery M., Bu?ek V., Berthiaume A.. Phys. Rev. A, 1999, 59: 1829 CrossRef ADS Google Scholar

[10] Long G. L., Liu X. S.. Phys. Rev. A, 2002, 65: 032302 CrossRef ADS Google Scholar

[11] Deng F. G., Long G. L., Liu X. S.. Phys. Rev. A, 2003, 68: 042317 CrossRef ADS Google Scholar

[12] Deng F. G., Long G. L.. Phys. Rev. A, 2004, 69: 052319 CrossRef ADS Google Scholar

[13] Wang C., Deng F. G., Li Y. S., Liu X. S., Long G. L.. Phys. Rev. A, 2005, 71: 044305 CrossRef ADS Google Scholar

[14] Hu J. Y., Yu B., Jing M. Y., Xiao L. T., Jia S. T., Qin G. Q., Long G. L.. Light Sci Appl, 2016, 5: e16144 CrossRef Google Scholar

[15] Zhang W., Ding D. S., Sheng Y. B., Zhou L., Shi B. S., Guo G. C.. Phys. Rev. Lett., 2017, 118: 220501 CrossRef PubMed ADS arXiv Google Scholar

[16] X. H. Li, Acta Phys Sin. 64, 160307 (2015), doi: 10.7498/aps.64.160307. Google Scholar

[17] Kalamidas D.. Phys. Lett. A, 2005, 343: 331 CrossRef ADS Google Scholar

[18] Yamamoto T., Shimamura J., ?zdemir K., Koashi M., Imoto N.. Phys. Rev. Lett., 2005, 95: 040503 CrossRef PubMed ADS Google Scholar

[19] Li X. H., Deng F. G., Zhou H. Y.. Appl. Phys. Lett., 2007, 91: 144101 CrossRef ADS arXiv Google Scholar

[20] Deng F. G., Ren B. C., Li X. H.. Sci. Bull., 2017, 62: 46 CrossRef Google Scholar

[21] Barreiro J. T., Langford N. K., Peters N. A., Kwiat P. G.. Phys. Rev. Lett., 2005, 95: 260501 CrossRef PubMed ADS Google Scholar

[22] Barbieri M., Cinelli C., Mataloni P., De Martini F.. Phys. Rev. A, 2005, 72: 052110 CrossRef ADS Google Scholar

[23] Ceccarelli R., Vallone G., De Martini F., Mataloni P., Cabello A.. Phys. Rev. Lett., 2009, 103: 160401 CrossRef PubMed ADS arXiv Google Scholar

[24] Vallone G., Ceccarelli R., De Martini F., Mataloni P.. Phys. Rev. A, 2009, 79: 030301(R) CrossRef ADS arXiv Google Scholar

[25] Rossi A., Vallone G., Chiuri A., De Martini F., Mataloni P.. Phys. Rev. Lett., 2009, 102: 153902 CrossRef PubMed ADS arXiv Google Scholar

[26] Bhatti D., von Zanthier J., Agarwal G. S.. Phys. Rev. A, 2015, 91: 062303 CrossRef ADS arXiv Google Scholar

[27] Sheng Y. B., Deng F. G., Long G. L.. Phys. Rev. A, 2010, 82: 032318 CrossRef ADS arXiv Google Scholar

[28] Ren B. C., Wei H. R., Hua M., Li T., Deng F. G.. Opt. Express, 2012, 20: 24664 CrossRef ADS arXiv Google Scholar

[29] Wang T. J., Lu Y., Long G. L.. Phys. Rev. A, 2012, 86: 042337 CrossRef ADS Google Scholar

[30] Liu Q., Zhang M.. Phys. Rev. A, 2015, 91: 062321 CrossRef ADS arXiv Google Scholar

[31] Li X. H., Ghose S.. Phys. Rev. A, 2016, 93: 022302 CrossRef ADS arXiv Google Scholar

[32] Wang G. Y., Ai Q., Ren B. C., Li T., Deng F. G.. Opt. Express, 2016, 24: 28444 CrossRef ADS arXiv Google Scholar

[33] Ren B. C., Deng F. G.. Sci. Rep., 2015, 4: 4623 CrossRef PubMed ADS arXiv Google Scholar

[34] Ren B. C., Wang G. Y., Deng F. G.. Phys. Rev. A, 2015, 91: 032328 CrossRef ADS arXiv Google Scholar

[35] Li T., Long G. L.. Phys. Rev. A, 2016, 94: 022343 CrossRef ADS Google Scholar

[36] Ren B. C., Deng F. G.. Opt. Express, 2017, 25: 10863 CrossRef ADS Google Scholar

[37] Barreiro J. T., Wei T. C., Kwiat P. G.. Nat. Phys., 2008, 4: 282 CrossRef Google Scholar

[38] Sheng Y. B., Deng F. G.. Phys. Rev. A, 2010, 81: 032307 CrossRef ADS arXiv Google Scholar

[39] Sheng Y. B., Deng F. G.. Phys. Rev. A, 2010, 82: 044305 CrossRef ADS arXiv Google Scholar

[40] Li X. H.. Phys. Rev. A, 2010, 82: 044304 CrossRef ADS arXiv Google Scholar

[41] Deng F. G.. Phys. Rev. A, 2011, 83: 062316 CrossRef ADS arXiv Google Scholar

[42] Sheng Y. B., Zhou L.. Sci. Rep., 2015, 5: 7815 CrossRef PubMed ADS Google Scholar

[43] Wang T. J., Song S. Y., Long G. L.. Phys. Rev. A, 2012, 85: 062311 CrossRef ADS Google Scholar

[44] Ren B. C., Deng F. G.. Laser Phys. Lett., 2013, 10: 115201 CrossRef ADS arXiv Google Scholar

[45] Ren B. C., Du F. F., Deng F. G.. Phys. Rev. A, 2014, 90: 052309 CrossRef ADS arXiv Google Scholar

[46] Wang G. Y., Liu Q., Deng F. G.. Phys. Rev. A, 2016, 94: 032319 CrossRef ADS arXiv Google Scholar

[47] Du F. F., Li T., Long G. L.. Ann. Phys., 2016, 375: 105 CrossRef ADS Google Scholar

[48] Wang T. J., Liu L. L., Zhang R., Cao C., Wang C.. Opt. Express, 2015, 23: 9284 CrossRef ADS Google Scholar

[49] Ren B. C., Du F. F., Deng F. G.. Phys. Rev. A, 2013, 88: 012302 CrossRef ADS arXiv Google Scholar

[50] Ren B. C., Long G. L.. Opt. Express, 2014, 22: 6547 CrossRef ADS Google Scholar

[51] Li X., Ghose S.. Laser Phys. Lett., 2014, 11: 125201 CrossRef ADS arXiv Google Scholar

[52] Li X. H., Ghose S.. Opt. Express, 2015, 23: 3550 CrossRef ADS arXiv Google Scholar

[53] Li X. H., Ghose S.. Phys. Rev. A, 2015, 91: 062302 CrossRef ADS arXiv Google Scholar

[54] Ren B. C., Long G. L.. Sci. Rep., 2015, 5: 16444 CrossRef PubMed ADS Google Scholar

[55] Cao C., Wang T. J., Mi S. C., Zhang R., Wang C.. Ann. Phys., 2016, 369: 128 CrossRef ADS Google Scholar

[56] Fan L. L., Xia Y., Song J.. Quantum Inf. Process., 2014, 13: 1967 CrossRef ADS Google Scholar

[57] Liu H. J., Xia Y., Song J.. Quantum Inf. Process., 2016, 15: 2033 CrossRef ADS Google Scholar

[58] Du F. F., Deng F. G., Long G. L.. Sci. Rep., 2016, 6: 35922 CrossRef PubMed ADS Google Scholar

[59] Bennett C. H., Brassard G., Popescu S., Schumacher B., Smolin J. A., Wootters W. K.. Phys. Rev. Lett., 1996, 76: 722 CrossRef PubMed ADS Google Scholar

[60] Pan J. W., Simon C., Brukner , Zeilinger A.. Nature, 2001, 410: 1067 CrossRef PubMed Google Scholar

[61] Simon C., Pan J. W.. Phys. Rev. Lett., 2002, 89: 257901 CrossRef PubMed ADS Google Scholar

[62] Sheng Y. B., Deng F. G., Zhou H. Y.. Phys. Rev. A, 2008, 77: 042308 CrossRef ADS arXiv Google Scholar

[63] Wang C., Zhang Y., Jin G.. Phys. Rev. A, 2011, 84: 032307 CrossRef ADS Google Scholar

[64] Sheng Y. B., Zhou L., Long G. L.. Phys. Rev. A, 2013, 88: 022302 CrossRef ADS Google Scholar

[65] Li T., Yang G. J., Deng F. G.. Opt. Express, 2014, 22: 23897 CrossRef ADS arXiv Google Scholar

[66] Zhou L., Sheng Y. B.. Laser Phys. Lett., 2015, 12: 045203 CrossRef ADS Google Scholar

[67] Zhou L., Sheng Y. B.. Sci. Rep., 2016, 6: 28813 CrossRef PubMed ADS arXiv Google Scholar

[68] Bennett C. H., Bernstein H. J., Popescu S., Schumacher B.. Phys. Rev. A, 1996, 53: 2046 CrossRef ADS Google Scholar

[69] Zhao Z., Pan J. W., Zhan M. S.. Phys. Rev. A, 2001, 64: 014301 CrossRef ADS Google Scholar

[70] Yamamoto T., Koashi M., Imoto N.. Phys. Rev. A, 2001, 64: 012304 CrossRef ADS Google Scholar

[71] Sheng Y. B., Deng F. G., Zhou H. Y.. Phys. Rev. A, 2008, 77: 062325 CrossRef ADS arXiv Google Scholar

[72] Sheng Y. B., Zhou L., Zhao S. M., Zheng B. Y.. Phys. Rev. A, 2012, 85: 012307 CrossRef ADS arXiv Google Scholar

[73] Deng F. G.. Phys. Rev. A, 2012, 85: 022311 CrossRef ADS arXiv Google Scholar

[74] Sheng Y. B., Zhou L., Zhao S. M.. Phys. Rev. A, 2012, 85: 042302 CrossRef ADS arXiv Google Scholar

[75] Du F. F., Deng F. G.. Sci. China-Phys. Mech. Astron., 2015, 58: 1 CrossRef ADS Google Scholar

[76] Cao C., Wang C., He L., Zhang R.. Opt. Express, 2013, 21: 4093 CrossRef ADS Google Scholar

[77] Wang C., Shen W. W., Mi S. C., Zhang Y., Wang T. J.. Sci. Bull., 2015, 60: 2016 CrossRef Google Scholar

[78] Cao C., Chen X., Duan Y. W., Fan L., Zhang R., Wang T. J., Wang C.. Sci. China-Phys. Mech. Astron., 2016, 59: 100315 CrossRef ADS Google Scholar

[79] Sheng Y. B., Pan J., Guo R., Zhou L., Wang L. Sci. China-Phys. Mech. Astron., 2015, 58: 060301 CrossRef Google Scholar

[80] Du F. F., Long G. L.. Quantum Inf. Process., 2017, 16: 26 CrossRef ADS Google Scholar

[81] Liu H. J., Fan L. L., Xia Y., Song J.. Quantum Inf. Process., 2015, 14: 2909 CrossRef ADS Google Scholar

[82] Banerjee A., Shukla C., Pathak A.. Quantum Inf. Process., 2015, 14: 4523 CrossRef ADS arXiv Google Scholar

[83] Shukla C., Banerjee A., Pathak A.. Quantum Inf. Process., 2015, 14: 2077 CrossRef ADS arXiv Google Scholar

[84] Pan J., Zhou L., Gu S. P., Wang X. F., Sheng Y. B., Wang Q.. Quantum Inf. Process., 2016, 15: 1669 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Schematic diagram of the error-correcting distribution of a single-photon in polarization-spatial modes. $a$ and $b$ represent the two spatial modes of the photon. $A$ and $B$ represent two different paths for the photon. PBS$_i$ ($i=1,2$) represents a polarizing beam splitter, which transmits photons with a horizontal polarization and reflects photons with a vertical polarization. BS$_{j}$ ($j=1,2,3,4$) is a 50:50 beam splitter. HWP denotes a half-wave plate which is used to complete the transformations between the polarizations $|V\rangle$ and $|H\rangle$, i.e., $|V\rangle~\rightleftarrows~|H\rangle$. UPI represents an unbalanced polarizing interferometer.

  • Figure 2

    (Color online) Schematic diagram of the error-correcting distribution of a pair of hyperentangled photons with spatial-polarization DOFs. $a_j$ and $b_j$ represent the two spatial modes of the photon $j$ ($j=1,2$). $A_j$ and $B_j$ are two different paths for the photon $j$. UPI is an unbalanced polarizing interferometer, as shown in Figure 1. The circles represent the channels over which the photons are separately transmitted to the two parties Alice and Bob. The hyperentangled photon pair $12$ in the state $|\psi\rangle=(\alpha'|a_1a_2\rangle+\beta'|b_1b_2\rangle)_{12}(\alpha|HH\rangle+\beta|VV\rangle)_{12}$ is produced from the quantum source in the middle node and the two photons 1 and 2 are transmitted to the two parties Bob and Alice, respectively. Before the photons are transmitted over the optical-fiber channels, encoders are used to code their quantum states. After the parties Alice and Bob receive the photons, they decode the quantum state with decoders.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1