Characteristics of surface acoustic waves in <inline-formula><mml:math display="inline"><mml:mrow><mml:mstyle mathvariant="bold"><mml:mo stretchy="false">(</mml:mo><mml:mn>11</mml:mn></mml:mstyle><mml:mover accent="true"><mml:mstyle mathvariant="bold"><mml:mrow><mml:mn other="0">2</mml:mn></mml:mrow></mml:mstyle><mml:mrow><mml:mo other="1">ˉ</mml:mo></mml:mrow></mml:mover><mml:mstyle mathvariant="bold"><mml:mn>0</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mstyle></mml:mrow></mml:math></inline-formula>ZnO film/<italic>R</italic>-sapphire substrate structures (112ˉ0)ZnO films, R-sapphire">

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 2: 024311(2018) https://doi.org/10.1007/s11433-017-9092-0

Characteristics of surface acoustic waves in (112ˉ0)ZnO film/R-sapphire substrate structures

More info
  • ReceivedJun 21, 2017
  • AcceptedAug 22, 2017
  • PublishedDec 5, 2017
PACS numbers

Abstract

(112ˉ0)ZnO film/R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [11ˉ00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity (vp), electromechanical coupling coefficient (k2), temperature coefficient of frequency (TCF) and reflection coefficient (r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k2 of 4.95% in (90°, 90°, 0°) (112ˉ0)ZnO film/R-sapphire substrate associated with a phase velocity of 5300?m/s; and the 0th Love wave in (0°, 90°, 0°) (112ˉ0)ZnO film/R-sapphire substrate has a maximum k2 of 3.86% associated with a phase velocity of 3400?m/s. And (112ˉ0)ZnO film/R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.


Funded by

Foundation of Nanjing University of Posts and Telecommunications(NY213018)

Natural Science Foundation of Jiangsu Higher Education Institutions of China(13KJB140008)

National Natural Science Foundation of China(11304160)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No.11304160), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 13KJB140008) and the Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY213018).


References

[1] A. A. Oliner, Acoustic Surface Waves (Springer-Verlag, Berlin, 1978), p.15. Google Scholar

[2] Kawachi O., Mineyoshi S., Endoh G., Ueda M., Ikata O., Hashimoto E., Yamaguchi M.. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 2001, 48: 1442 CrossRef Google Scholar

[3] Wang H., Wang W. B., Wu H. D., Su B., Shui Y. A.. Sci. China-Phys. Mech. Astron., 2013, 56: 1263 CrossRef ADS Google Scholar

[4] Srivastava R., Mansingh A.. J. Phys. D-Appl. Phys., 1988, 21: 1535 CrossRef ADS Google Scholar

[5] Nakahata H., Kitabayashi H., Uemura T., Hachigo A., Higaki K., Fujii S., Seki Y., Yoshida K., Shikata S.. Jpn. J. Appl. Phys., 1998, 37: 2918 CrossRef ADS Google Scholar

[6] Gao B., Yang Y. T., Yang H., Zhang S. Y., Liu X. J.. Sci. China-Phys. Mech. Astron., 2013, 56: 1280 CrossRef ADS Google Scholar

[7] K. Wasa, I. Kanno, and H. Kotera, Handbook of Sputter Deposition Technology (Elsevier, New York, 2012), p. 362. Google Scholar

[8] Zhang Q., Han T., Tang G., Chen J., Hashimoto K. Y.. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 2016, 63: 1608 CrossRef PubMed Google Scholar

[9] Guo Y. J., Zhao C., Zhou X. S., Li Y., Zu X. T., Gibson D., Fu Y. Q.. Smart Mater. Struct., 2015, 24: 125015 CrossRef ADS Google Scholar

[10] Mitsuyu T., Ono S., Wasa K.. J. Appl. Phys., 1980, 51: 2464 CrossRef ADS Google Scholar

[11] T. Mitsuyu, O. Yamazaki, and K. Wasa, in 1981 Ultrasonics Symposium Proceedings, Chicago, USA, 14-16 October 1981, edited by B. R. McAvoy (Institute of Electrical and Electronic Engineers, New York, 1981), pp. 74-77. Google Scholar

[12] Fu S., Li Q., Gao S., Wang G., Zeng F., Pan F.. Appl. Surf. Sci., 2017, 402: 392 CrossRef ADS Google Scholar

[13] Biswas P., Kundu S., Banerji P., Bhunia S.. Sensor. Actuat. B-Chem., 2013, 178: 331 CrossRef Google Scholar

[14] Wang Y., Zhang S. Y., Fan L., Shui X. J., Zhang Z. N., Wasa K.. IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 2013, 60: 1213 CrossRef PubMed Google Scholar

[15] Lan X. D., Zhang S. Y., Wang Y., Fan L., Shui X. J. Sensor. Actuat. A-Phys., 2015, 230: 136 CrossRef Google Scholar

[16] Lan X. D., Zhang S. Y., Fan L., Wang Y.. Sensors, 2016, 16: 1112 CrossRef PubMed Google Scholar

[17] L. An, Digit. Manufact. Indust. 7, 34 (2012). Google Scholar

[18] G. W. Farnell, and E. L. Adler, Elastic Wave Propagation in Thin Layers, in Physical Acoustics (Academic, New York, 1972), p. 35. Google Scholar

[19] Takayasu G., Orson L.. J. Geophys. Res., 1989, 94: 7588 CrossRef Google Scholar

[20] Lee H. F., Wu J. L., Hsu P. Y., Tung Y. L., Ouyang F. Y., Kai J. J.. Thin Solid Films, 2013, 529: 2 CrossRef ADS Google Scholar

[21] Bjurstr?m J., Wingqvist G., Yantchev V., Katardjiev I.. J. Micromech. Microeng., 2007, 17: 651 CrossRef ADS Google Scholar

[22] Maouhoub S., Aoura Y., Mir A.. Diamond Related Mater., 2016, 62: 7 CrossRef ADS Google Scholar

[23] Kaletta U. C., Wenger C.. Ultrasonics, 2014, 54: 291 CrossRef PubMed Google Scholar

[24] Wang Y., Xie Y. C., Zhang S. Y., Lan X. D.. Chin. Phys. B, 2017, 26: 087703 CrossRef Google Scholar

  • Figure 1

    (Color online) Schematic of IDT/(112ˉ0)ZnO film/R-sapphire substrate structure (a) and Euler angles (b).

  • Figure 2

    Typical impedance responses of SAW resonators based on IDT/(112ˉ0)ZnO film/R-sapphire substrate structures. (a) Rayleigh waves; (b) Love waves.

  • Figure 3

    (Color online) Displacement distributions in symmetric and anti-symmetric modes. (a) Rayleigh waves; (b) Love waves.

  • Figure 4

    (Color online) vp and k2 of SAWs as a function of h/λ in (112ˉ0)ZnO film/R-sapphire substrate structures. (a) Rayleigh waves; (b) Love waves.

  • Figure 5

    (Color online) TCF of SAWs as a function of h/λ in (112ˉ0)ZnO film/R-sapphire substrate structures. (a) Rayleigh waves; (b) Love waves.

  • Figure 6

    (Color online) Reflection coefficients of SAW as a function of h/λ in IDT/(112ˉ0)ZnO film/R-sapphire substrate with different electrode materials. (a) Rayleigh waves; (b) Love waves.

  • Figure 7

    (Color online) Reflection coefficients of SAWs as a function of h/λ in IDT/(112ˉ0)ZnO film/R-sapphire substrate structures with different Al electrode height. (a) Rayleigh waves; (b) Love waves.

  • Figure 8

    (Color online) Variations of maxima kmax2 for SAWs in (α, 90°, 0°) (112ˉ0)ZnO films/R-sapphire substrates as a function of α: (a) Rayleigh waves; (b) Love waves.

  • Table 1   Material constants and temperature coefficients used in simulations [18,19]

    Parameter

    Symbol

    ZnO

    Sapphire

    Elastic constant (1010?N/m2)

    C 11

    20.97

    49.73

    C 12

    12.11

    16.28

    C 13

    10.53

    11.60

    C 14

    ?2.19

    C 33

    21.12

    50.09

    C 44

    4.27

    14.68

    C 66

    16.8

    Temperature coefficients (10?4/°C)

    TC(C11)

    ?1.12

    TC(C13)

    ?1.61

    TC(C33)

    ?1.23

    TC(C44)

    ?0.70

    Piezoelectric constants (C/m2)

    e 24

    ?0.48

    e 31

    ?0.57

    e 33

    1.32

    Relative dielectric constants

    ε11/ε0

    7.57

    9.34

    ε11/ε0

    10.2

    11.54

    Density (kg/m3)

    ρ

    5670

    3982

  • Table 2   Material parameters of Al, Cu, Ag and Au used in simulationsa)

    Material

    Density (kg/m3)

    Young’s modulus (GPa)

    Poisson’s ratio

    Al

    2700

    70.3

    0.345

    Cu

    8960

    120

    0.34

    Ag

    10500

    83

    0.37

    Au

    19300

    70

    0.44

    a)From COMSOL 4.3b Material Library

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1