A simplex method for the orbit determination of maneuvering satellites

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 2: 024511(2018) https://doi.org/10.1007/s11433-017-9102-1

A simplex method for the orbit determination of maneuvering satellites

More info
  • ReceivedMay 31, 2017
  • AcceptedSep 13, 2017
  • PublishedNov 9, 2017
PACS numbers

Abstract

A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0?m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.


Funded by

National Natural Science Foundation of China(11503096)

State Key Laboratory of Geo-information Engineering(SKLGIE2014-M-2-3)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 11503096), and the State Key Laboratory of Geo-information Engineering (Grant No. SKLGIE2014-M-2-3).


References

[1] Zhang Y.. J. Rocket Propul., 2005, 31: 27 CrossRef Google Scholar

[2] Kozubskii K. N., Murashko V. M., Rylov Y. P., Trifonov Y. V., Khodnenko V. P., Kim V., Popov G. A., Obukhov V. A.. Plasm. Phys. Rep., 2003, 29: 251 CrossRef ADS Google Scholar

[3] King L. B., Gallimore A. D., Marrese C. M.. J. Propul. Power, 1998, 14: 327 CrossRef Google Scholar

[4] C. E. Garner, M. D. Rayman, and J. R. Brophy, In-flight operation of the Dawn ion propulsion system through start of the Vesta cruise phase, AIAA Paper No. 2009-5091, 2009. Google Scholar

[5] Zhang T. P., Zhang X. E.. Vacuum Cryogen., 2013, 19: 187 CrossRef Google Scholar

[6] G. Beutler, M. R. Drinkwater, R. Rummel, and R. Von Steiger, Earth Gravity Field from Space-from Sensors to Earth Sciences (Springer, Netherlands , 2003), p. 419. Google Scholar

[7] Beutler G., Brockmann E., Gurtner W., Hugentobler U., Mervart L., Rothacher M.. Manuscr. Geod., 1994, 19: 367 CrossRef Google Scholar

[8] Xu T. H., Jiang N., Sun Z. Z.. Sci. China-Phys. Mech. Astron., 2012, 55: 892 CrossRef ADS Google Scholar

[9] Cao F., Yang X. H., Li Z. G., Sun B. Q., Kong Y., Chen L., Feng C.. Adv. Space Res., 2014, 54: 1828 CrossRef ADS Google Scholar

[10] H. S. Lin, H. Huang, G. Liu, and H. E. Bing, Electron. Opt. & Control 22, 64 (2015). Google Scholar

[11] Guo R., Li X. J., Zhou J. H., Liu L., Huang Y.. J. Geomat. Sci. Technol., 2013, 30: 465 CrossRef Google Scholar

[12] Zhang Z. K., Chen S. J., Du L., Danzeng Q. Y., Wang H., Zhang Q. F.. J. Astronaut., 2014, 35: 506 CrossRef Google Scholar

[13] Li H. N., Li J. S., Huang Y. X.. Sys. Eng. Electron., 2010, 32: 1957 CrossRef Google Scholar

[14] Song X. Y., Jia X. L., Jiao W. H., Mao Y.. Geomat. Inf. Sci. Wuhan Univ., 2009, 34: 573 CrossRef Google Scholar

[15] Zhang Y., Chen M., Duan J. F., Xie J. F.. Mann. Spacefl., 2013, 19: 45 CrossRef Google Scholar

[16] Spendley W., Hext G. R., Himsworth F. R.. Technometrics, 1962, 4: 441 CrossRef Google Scholar

[17] Nelder J. A., Mead R.. Comp. J., 1965, 7: 308 CrossRef Google Scholar

[18] Wu Z., Gou L. F.. Comp. Simul., 2014, 31: 64 CrossRef Google Scholar

[19] J. F. Chen, Z. W. Ren, and X. N. Fan, in Proceedings of the 25th Chinese Control Conference, 7-11 August, 2006, Harbin, China, edited by G. Z. Cheng and G. R. Duan (Beihang University Press, Beijing China, 2006), pp. 1448-1453. Google Scholar

[20] F. G. Yuan, X. H. Zhang, and J. W. Yang, J. Suzhou U. Sci. Technol. (Nat. Sci.) 28, 33 (2011). Google Scholar

[21] Liao L. W., Cui Y. D., Chen T., Qiu C.. Metall. Anal., 2005, 25: 7 CrossRef Google Scholar

[22] Juang C. F., Chung I. F., Hsu C. H.. Fuzzy Sets Syst., 2007, 158: 1979 CrossRef Google Scholar

[23] Xiao H., Shao Y., Zhou X., Wilcox S. J.. Measurement, 2014, 55: 25 CrossRef Google Scholar

[24] Ye B., Zhang H. B., Wu J.. J. Astronaut., 2009, 30: 1371 CrossRef Google Scholar

[25] Clemen C.. Acta Astronaut., 2002, 51: 457 CrossRef ADS Google Scholar

[26] Q. L. Kong, J. Y. Guo, and C. M. Zhao, Sci. Surv. Map. 41, 165 (2016). Google Scholar

[27] B. D. Tapley, E. S. Bob, and H. B. George, Statistical Orbit Determination (Elsevier Academic Press, USA, 2004), p. 50. Google Scholar

[28] G. C. Xu, and J. Xu, Orbits-2nd Order Singularity-free Solutions (2nd Edition, Springer Heidelberg, 2013), p.39. Google Scholar

[29] Huang Y., Hu X. G., Zhang X. Z., Jiang D. R., Guo R., Wang H., Shi S. B.. Chin. Sci. Bull., 2011, 56: 2765 CrossRef Google Scholar

[30] J. S. Li, Satellite Precision Orbit Determination (PLA Publishing Press, Beijing, 1995), p. 217. Google Scholar

[31] J. Zhu, J. S. Wang, J. R. Chen, and Y. F. He, J. Astronaut. 34, 163 (2013). Google Scholar

[32] J. Zhu, J. R. Chen, G. Zeng, J. Li, and J. S. Wang, in Proceedings of China Satellite Navigation Conference (CSNC) 2014 Proceedings: Volume III, Nanjing, China, 21-23 May, 2014, edited by J. D. Sun, H. T. Wu, W. H. Jiao and M. Q. Lu (Springer Berlin Heidelberg, Berlin Germany, 2014), pp. 3-14. Google Scholar

[33] M. L. Psiaki, in Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, 11-14 September, 2001, pp. 2838-2850. Google Scholar

[34] Mao W. L., Chen A. B.. AEU - Int. J. Electron. Commun., 2009, 63: 665 CrossRef Google Scholar

[35] Y. J. Xie, Weak GPS Signal Processing and Autonomous Navigation of High Earth Orbits Spacecraft, Dissertation for the Doctoral Degree, (Harbin Engineering University, Harbin, 2011), pp. 44-70. Google Scholar

[36] M. Sahmoudi, M. G. Amin, and R. Jr Landry, in Proceedings of IEEE/ION Position, Location and Navigation Symposium 2008, Monterey, America, 6-8 May, 2008, pp. 1362-1372. Google Scholar

[37] Lemmens S., Krag H.. J. Guidance Control Dyn., 2014, 37: 860 CrossRef ADS Google Scholar

  • Figure 1

    Position errors obtained for the SMOD and the LST for a satellite in LEO.

  • Figure 2

    Position errors obtained for the SMOD and the LST for a satellite in GEO.

  • Figure 3

    Position errors obtained for the SMOD for a satellite in LEO under pulse control for 60.0?s.

  • Figure 4

    Variation of the semi-major axis, eccentricity, and inclination of the mean orbit obtained by the SMOD and GPS for the Shijian-17 satellite in GEO during the 2?h process of electric propulsion over four days. December 3, 2016 (a), December 4, 2016 (b), December 5, 2016 (c), December 6, 2016 (d).

  • Table 1   Selection of the perturbations adopted in orbit determination

    Perturbation types

    Perturbation source

    Conservative perturbation

    Earth gravity

    N-body, including Solar, lunar, Venus and Jupiter gravitations

    Solid Earth tides

    Ocean tides

    Earth rotation parameter

    Relativistic perturbation

    Non-conservative perturbation

    Atmospheric drag (for LEO satellite)

    Earth albedo radiation

    Solar radiation pressure (for GEO satellite)

  • Table 2   Errors of initial orbital elements, number of iterations (NUM), and final objective function value (OFV)

    Initial orbital errors

    Output parameters

    a

    (km)

    e

    i (°)

    Ω, ω, M (°)

    NUM

    OFV

    Error 1

    10.0

    0.0001

    0.001

    0.01

    526

    912880

    Error 2

    5.0

    0.00015

    0.0015

    0.015

    1336

    0.086

    Error 3

    1.0

    0.0002

    0.002

    0.02

    593

    0.0043

    Error 4

    ?0.5

    0.0002

    0.002

    0.02

    1105

    0.16

    Error 5

    0.1

    0.0005

    0.005

    0.05

    735

    59.53

  • Table 3   Number of iterations (NUM), running time and final objective function value (OFV) with respect to different exponents n

    n

    Running time (min)a)

    NUM

    OFV

    1

    3.32

    197

    3.44

    2

    10.51

    711

    0.36

    3

    2.92

    159

    0.51

    4

    8.63

    584

    0.07

    5

    14.58

    991

    0.08

    6

    21.58

    1486

    0.02

    7

    19.12

    1317

    0.002

    8

    20.55

    1418

    0.03

    a)Here givens the operating environment for the program. The computer is configured with an Intel(R) Core (TM) processor, 3.4?GHz CPU and 3.4 GB of RAM. The operating system is Windows XP and the program language is Fortran.

  • Table 4   The orbital accuracy and acceleration increment estimated by two methods

    Method

    Date

    Position error (m)

    Estimated electronic propulsive acceleration/empirical acceleration (10?5?m/s2)

    R

    T

    N

    Total

    R

    T

    N

    SMOD

    3rd

    9.45

    0.99

    6.12

    11.31

    ?1.40

    0.10

    0.20

    4th

    8.61

    4.39

    4.00

    10.46

    ?1.40

    0.30

    0.60

    5th

    4.04

    1.02

    6.95

    8.10

    6th

    3.00

    1.41

    2.74

    4.30

    ?1.30

    0.30

    0.30

    LST

    3rd

    19.69

    1.89

    4.53

    20.29

    ?7.84

    0.74

    0.32

    4th

    16.57

    6.24

    4.67

    18.31

    ?2.35

    0.84

    1.94

    5th

    7.05

    1.41

    3.64

    8.06

    6th

    6.84

    1.68

    7.68

    10.43

    ?1.24

    0.59

    0.15

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1