Regional stretch method to measure the elastic and hyperelastic properties of soft materials

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 2: 024611(2018) https://doi.org/10.1007/s11433-017-9118-0

Regional stretch method to measure the elastic and hyperelastic properties of soft materials

More info
  • ReceivedAug 31, 2017
  • AcceptedOct 11, 2017
  • PublishedDec 18, 2017
PACS numbers

Abstract

Characterizing the mechanical properties of soft materials and biological tissues is of great significance for understanding their deformation behaviors. In this paper, a regional stretching method is proposed to measure the elastic and hyperelastic properties of a soft material with an adhesive surface or with the aid of glue. Theoretical and dimensional analyses are performed to investigate the regional stretch problem for soft materials that obey the neo-Hookean model, the Mooney-Rivlin model, or the Arruda-Boyce model. Finite element simulations are made to determine the expressions of the dimensionless functions that correlate the stretch response with the constitutive parameters. Thereby, an inverse approach is established to determine the elastic and hyperelastic properties of the tested materials. The regional stretch method is also compared to the indentation technique. Finally, experiments are performed to demonstrate the effectiveness of the proposed method.


Funded by

National Natural Science Foundation of China(11432008)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11432008, 11572179, and 11172155).


References

[1] Johnson C. L., McGarry M. D. J., Gharibans A. A., Weaver J. B., Paulsen K. D., Wang H., Olivero W. C., Sutton B. P., Georgiadis J. G.. Neuroimage, 2013, 79: 145 CrossRef PubMed Google Scholar

[2] Chang J. M., Moon W. K., Cho N., Yi A., Koo H. R., Han W., Noh D. Y., Moon H. G., Kim S. J.. Breast Cancer Res. Treat., 2011, 129: 89 CrossRef PubMed Google Scholar

[3] Karimi A., Navidbakhsh M., Shojaei A., Faghihi S.. Mater. Sci. Eng.-C, 2013, 33: 2550 CrossRef PubMed Google Scholar

[4] Murphy M. C., Huston Iii J., Jack Jr C. R., Glaser K. J., Manduca A., Felmlee J. P., Ehman R. L.. J. Magn. Reson. Imag., 2011, 34: 494 CrossRef PubMed Google Scholar

[5] Smith S. B., Finzi L., Bustamante C.. Science, 1992, 258: 1122 CrossRef ADS Google Scholar

[6] Ziemann F., Radler J., Sackmann E.. Biophys. J., 1994, 66: 2210 CrossRef ADS Google Scholar

[7] Swaminathan V., Mythreye K., O’Brien E. T., Berchuck A., Blobe G. C., Superfine R.. Cancer Res., 2011, 71: 5075 CrossRef PubMed Google Scholar

[8] Chowdhury F., Na S., Li D., Poh Y. C., Tanaka T. S., Wang F., Wang N.. Nat. Mater., 2010, 9: 82 CrossRef PubMed ADS Google Scholar

[9] Hochmuth R. M.. J. Biomech., 2000, 33: 15 CrossRef Google Scholar

[10] Roan E., Vemaganti K.. J. Biomech. Eng., 2006, 129: 450 CrossRef PubMed Google Scholar

[11] Guilak F., Jones W. R., Ting-Beall H. P., Lee G. M.. Osteoarthr. Cartilage, 1999, 7: 59 CrossRef PubMed Google Scholar

[12] Evans E. A.. Biophys. J., 1983, 43: 27 CrossRef ADS Google Scholar

[13] Zhang M. G., Cao Y. P., Li G. Y., Feng X. Q.. J. Mech. Phys. Solids, 2014, 68: 179 CrossRef ADS Google Scholar

[14] Boudou T., Ohayon J., Arntz Y., Finet G., Picart C., Tracqui P.. J. Biomech., 2006, 39: 1677 CrossRef PubMed Google Scholar

[15] Zhao R., Sider K. L., Simmons C. A.. Acta Biomater., 2011, 7: 1220 CrossRef PubMed Google Scholar

[16] Cheng Y. T., Cheng C. M.. Mater. Sci. Eng. R.-Rep., 2004, 44: 91 CrossRef Google Scholar

[17] Oommen B., Van Vliet K. J.. Thin Solid Films, 2006, 513: 235 CrossRef ADS Google Scholar

[18] Hu Y., Zhao X., Vlassak J. J., Suo Z.. Appl. Phys. Lett., 2010, 96: 121904 CrossRef ADS Google Scholar

[19] Hu Y., Chen X., Whitesides G. M., Vlassak J. J., Suo Z.. J. Mater. Res., 2011, 26: 785 CrossRef ADS Google Scholar

[20] J. Harding, and I. Sneddon, The Elastic Stresses Produced by the Indentation of the Plane Surface of a Semi-Infinite Elastic solid by a Rigid Punch (Cambridge University Press, Cambridge, 1945). Google Scholar

[21] I. N. Sneddon, Boussinesq’s Problem for a Flat-Ended Cylinder (Cambridge University Press, Cambridge, 1946). Google Scholar

[22] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996). Google Scholar

[23] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Courier Corporation, North Chelmsford, 2014). Google Scholar

[24] Dieci L., Papini A.. Numer. Algorithms, 2001, 28: 137 CrossRef ADS Google Scholar

[25] Cao Y., Lu J.. Acta Mater., 2004, 52: 1143 CrossRef Google Scholar

[26] X. Q. Feng, Y. P. Cao, and B. Li, Surface Wrinkling Mechanics of Soft Materials (Science Press, Beijing, 2017). Google Scholar

  • Figure 1

    (Color online) Schematic of the regional stretch test of a soft material.

  • Figure 2

    (Color online) (a) The finite element model of the regional stretch test and (b) the magnified view of the local stretch region.

  • Figure 3

    (Color online) Relationships between dimensionless functions Π and the hyperelastic parameters α and λm under different values of h/a. (a) Mooney-Rivlin model; (b) Arruda-Boyce model.

  • Figure 4

    (Color online) Comparison between the hyperelastic solutions and the Sneddon’s solution. (a) Mooney-Rivlin model; (b) Arruda-Boyce model.

  • Figure 5

    (Color online) The relationship between the reciprocals of condition number 1/Ψ and (a) α for the Mooney-Rivlin model; and (b) λm for the Arruda-Boyce model.

  • Figure 6

    (Color online) ElectroForce? 3100 test instrument used in our experiments.

  • Figure 7

    (Color online) Force-displacement curves obtained from the regional stretch tests.

  • Figure 8

    (Color online) Load-depth curves obtained from the indentation tests.

  • Figure 9

    (Color online) Force-displacement curves obtained by using indenters of different cross-sectional shapes.

  • Table 1   Comparison between the identified parameters and the values taken in FEM simulations

    Neo-Hookean

    Actual μ0 (MPa)

    Identified μ0 (MPa)

    2

    1.97

    Mooney-Rivlin

    | Ψ MR |

    Actual μ0 (MPa)

    Identified μ0 (MPa)

    Actual α

    Identified α

    10.95

    2

    2.011

    0.5

    0.527

    5.76

    2

    1.998

    0.7

    0.692

    4.86

    2

    1.985

    0.9

    0.872

    Arruda-Boyce

    | Ψ AB |

    Actual μ0 (MPa)

    Identified μ0 (MPa)

    Actual λm

    Identified λm

    5.15

    2

    2.052

    1.1

    1.263

    7.34

    2

    2.044

    1.5

    1.810

    11.87

    2

    2.041

    2

    2.741

  • Table 2   Initial shear modulus determined from the regional stretch tests. Here, the Sneddon’s solution in eq. (4) and the neo-Hookean solution in eq. (5) are used to analyze the data

    Shear modulus

    Test-1

    Test-2

    Test-3

    Test-4

    Test-5

    Test-6

    Test-7

    Test-8

    Test-9

    μ0 in eq. (4) (kPa)

    2.95

    2.68

    2.87

    2.63

    2.71

    2.54

    2.29

    2.88

    2.73

    μ0 in eq. (5) (kPa)

    2.94

    2.63

    2.82

    2.59

    2.66

    2.53

    2.26

    2.82

    2.68

  • Table 3   Initial shear modulus determined from the indentation test. The Hertzian solution in eq. (15) and the neo-Hookean solution in eq. (16) are used to fit the data

    Shear modulus

    Test-1

    Test-2

    Test-3

    Test-4

    Test-5

    μ0 in eq. (15) (kPa)

    2.29

    2.92

    2.91

    3.18

    2.90

    μ0 in eq. (16) (kPa)

    2.50

    3.19

    3.18

    3.49

    3.16

  • Table 4   Comparison of the F-h curves obtained by using indenters of different shapes

    Cross-sectional shape

    Slope of F-h curves (N/m)

    Circle

    9009.91

    Square

    9188.61

    Regular triangle

    9446.47

    Rectangle-I

    9430.63

    Rectangle-II

    10022.95

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1