Characterizing the mechanical properties of soft materials and biological tissues is of great significance for understanding their deformation behaviors. In this paper, a regional stretching method is proposed to measure the elastic and hyperelastic properties of a soft material with an adhesive surface or with the aid of glue. Theoretical and dimensional analyses are performed to investigate the regional stretch problem for soft materials that obey the neo-Hookean model, the Mooney-Rivlin model, or the Arruda-Boyce model. Finite element simulations are made to determine the expressions of the dimensionless functions that correlate the stretch response with the constitutive parameters. Thereby, an inverse approach is established to determine the elastic and hyperelastic properties of the tested materials. The regional stretch method is also compared to the indentation technique. Finally, experiments are performed to demonstrate the effectiveness of the proposed method.
National Natural Science Foundation of China(11432008)
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11432008, 11572179, and 11172155).
[1] Johnson C. L., McGarry M. D. J., Gharibans A. A., Weaver J. B., Paulsen K. D., Wang H., Olivero W. C., Sutton B. P., Georgiadis J. G.. Neuroimage, 2013, 79: 145 CrossRef PubMed Google Scholar
[2] Chang J. M., Moon W. K., Cho N., Yi A., Koo H. R., Han W., Noh D. Y., Moon H. G., Kim S. J.. Breast Cancer Res. Treat., 2011, 129: 89 CrossRef PubMed Google Scholar
[3] Karimi A., Navidbakhsh M., Shojaei A., Faghihi S.. Mater. Sci. Eng.-C, 2013, 33: 2550 CrossRef PubMed Google Scholar
[4] Murphy M. C., Huston Iii J., Jack Jr C. R., Glaser K. J., Manduca A., Felmlee J. P., Ehman R. L.. J. Magn. Reson. Imag., 2011, 34: 494 CrossRef PubMed Google Scholar
[5] Smith S. B., Finzi L., Bustamante C.. Science, 1992, 258: 1122 CrossRef ADS Google Scholar
[6] Ziemann F., Radler J., Sackmann E.. Biophys. J., 1994, 66: 2210 CrossRef ADS Google Scholar
[7] Swaminathan V., Mythreye K., O’Brien E. T., Berchuck A., Blobe G. C., Superfine R.. Cancer Res., 2011, 71: 5075 CrossRef PubMed Google Scholar
[8] Chowdhury F., Na S., Li D., Poh Y. C., Tanaka T. S., Wang F., Wang N.. Nat. Mater., 2010, 9: 82 CrossRef PubMed ADS Google Scholar
[9] Hochmuth R. M.. J. Biomech., 2000, 33: 15 CrossRef Google Scholar
[10] Roan E., Vemaganti K.. J. Biomech. Eng., 2006, 129: 450 CrossRef PubMed Google Scholar
[11] Guilak F., Jones W. R., Ting-Beall H. P., Lee G. M.. Osteoarthr. Cartilage, 1999, 7: 59 CrossRef PubMed Google Scholar
[12] Evans E. A.. Biophys. J., 1983, 43: 27 CrossRef ADS Google Scholar
[13] Zhang M. G., Cao Y. P., Li G. Y., Feng X. Q.. J. Mech. Phys. Solids, 2014, 68: 179 CrossRef ADS Google Scholar
[14] Boudou T., Ohayon J., Arntz Y., Finet G., Picart C., Tracqui P.. J. Biomech., 2006, 39: 1677 CrossRef PubMed Google Scholar
[15] Zhao R., Sider K. L., Simmons C. A.. Acta Biomater., 2011, 7: 1220 CrossRef PubMed Google Scholar
[16] Cheng Y. T., Cheng C. M.. Mater. Sci. Eng. R.-Rep., 2004, 44: 91 CrossRef Google Scholar
[17] Oommen B., Van Vliet K. J.. Thin Solid Films, 2006, 513: 235 CrossRef ADS Google Scholar
[18] Hu Y., Zhao X., Vlassak J. J., Suo Z.. Appl. Phys. Lett., 2010, 96: 121904 CrossRef ADS Google Scholar
[19] Hu Y., Chen X., Whitesides G. M., Vlassak J. J., Suo Z.. J. Mater. Res., 2011, 26: 785 CrossRef ADS Google Scholar
[20]
J. Harding, and I. Sneddon,
[21]
I. N. Sneddon,
[22]
G. I. Barenblatt,
[23]
J. Hadamard,
[24] Dieci L., Papini A.. Numer. Algorithms, 2001, 28: 137 CrossRef ADS Google Scholar
[25] Cao Y., Lu J.. Acta Mater., 2004, 52: 1143 CrossRef Google Scholar
[26]
X. Q. Feng, Y. P. Cao, and B. Li,
Figure 1
(Color online) Schematic of the regional stretch test of a soft material.
Figure 2
(Color online) (a) The finite element model of the regional stretch test and (b) the magnified view of the local stretch region.
Figure 3
(Color online) Relationships between dimensionless functions Π and the hyperelastic parameters
Figure 4
(Color online) Comparison between the hyperelastic solutions and the Sneddon’s solution. (a) Mooney-Rivlin model; (b) Arruda-Boyce model.
Figure 5
(Color online) The relationship between the reciprocals of condition number
Figure 6
(Color online) ElectroForce? 3100 test instrument used in our experiments.
Figure 7
(Color online) Force-displacement curves obtained from the regional stretch tests.
Figure 8
(Color online) Load-depth curves obtained from the indentation tests.
Figure 9
(Color online) Force-displacement curves obtained by using indenters of different cross-sectional shapes.
Neo-Hookean |
|
|||
|
Actual |
Identified |
|
|
|
2 |
1.97 |
||
Mooney-Rivlin |
||||
|
Actual |
Identified |
Actual |
Identified |
10.95 |
2 |
2.011 |
0.5 |
0.527 |
5.76 |
2 |
1.998 |
0.7 |
0.692 |
4.86 |
2 |
1.985 |
0.9 |
0.872 |
Arruda-Boyce |
|
|
|
|
|
Actual |
Identified |
Actual |
Identified |
5.15 |
2 |
2.052 |
1.1 |
1.263 |
7.34 |
2 |
2.044 |
1.5 |
1.810 |
11.87 |
2 |
2.041 |
2 |
2.741 |
Shear modulus |
Test-1 |
Test-2 |
Test-3 |
Test-4 |
Test-5 |
Test-6 |
Test-7 |
Test-8 |
Test-9 |
|
2.95 |
2.68 |
2.87 |
2.63 |
2.71 |
2.54 |
2.29 |
2.88 |
2.73 |
|
2.94 |
2.63 |
2.82 |
2.59 |
2.66 |
2.53 |
2.26 |
2.82 |
2.68 |
Shear modulus |
Test-1 |
Test-2 |
Test-3 |
Test-4 |
Test-5 |
|
2.29 |
2.92 |
2.91 |
3.18 |
2.90 |
|
2.50 |
3.19 |
3.18 |
3.49 |
3.16 |
Cross-sectional shape |
Slope of |
Circle |
9009.91 |
Square |
9188.61 |
Regular triangle |
9446.47 |
Rectangle-I |
9430.63 |
Rectangle-II |
10022.95 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1