There is no abstract available for this article.
The author wishes to thank Michael Sun of South African College Junior School, Cape Town, for taking the picture in Figure
[1] Huang R., Suo Z.. J. Appl. Phys., 2002, 91: 1135-1142 CrossRef ADS Google Scholar
[2] Cerda E., Ravi-Chandar K., Mahadevan L.. Nature, 2002, 419: 579-580 CrossRef PubMed ADS Google Scholar
[3] Cerda E., Mahadevan L.. Phys. Rev. Lett., 2003, 90: 074302 CrossRef ADS Google Scholar
[4] Brochard-Wyart F.. Science, 2003, 300: 441-441 CrossRef PubMed Google Scholar
[5] Huang J., Juszkiewicz M., de Jeu W. H., Cerda E., Emrick T., Menon N., Russell T. P.. Science, 2007, 317: 650-653 CrossRef PubMed ADS Google Scholar
[6] Vella D., Adda-Bedia M., Cerda E.. Soft Matter, 2010, 6: 5778 CrossRef ADS Google Scholar
[7] Vella D., Ajdari A., Vaziri A., Boudaoud A.. Phys. Rev. Lett., 2011, 107: 174301 CrossRef PubMed ADS Google Scholar
[8] Zhao Y., Shao Z. C., Li G. Y., Zheng Y., Zhang W. Y., Li B., Cao Y., Feng X. Q.. Appl. Phys. Lett., 2017, 110: 231604 CrossRef ADS Google Scholar
[9] Liu J. L., Feng X. Q.. Acta Mech. Sin., 2012, 28: 928-940 CrossRef ADS Google Scholar
[10] Roman B., Bico J.. J. Phys.-Condens. Matter, 2010, 22: 493101 CrossRef PubMed ADS Google Scholar
[11] Liu J., Sun J., Mei Y.. J. Appl. Phys., 2013, 114: 044901-044901 CrossRef ADS Google Scholar
[12]
P. W. Bridgman,
[13]
L. I. Sedov,
[14]
B. Sun,
[15]
B. Sun, Phys. and Eng. (in Chinese)
[16] Sun B. H.. Sci. China-Phys. Mech. Astron., 2017, 60: 104711 CrossRef Google Scholar
[17]
P. G. de Gennes, F. Brochard-Wyart, and D. Quere,
[18] Tanner L. H.. J. Phys. D-Appl. Phys., 1979, 12: 1473-1484 CrossRef ADS Google Scholar
Figure 1
(Color online) (a) Typical wrinkling of elastic film; (b) typical capillary wrinkling of elastic film. The problem is to find the deformation wrinkling pattern pair $(N,\ell)$, where the wrinkling number is $N$ and the wrinkling length is $\ell$.
Figure 2
(Color online) Spreading of a drop on a film surface in a total wetting regime. Tanner's law: $\theta_\text{D}\sim~t^{-3/10}$. In this paper, we obtained $r~\sim~t^{-3/5}$.
Figure 3
(Color online) (a) Liquid drops of increasing size on a sheet of film. Gravity causes the largest drops to flatten. (b) Equilibrium of the forces (per unit length of the line of contact) act on the edge of a puddle. $\tilde{P}=(1/2)\rho~g~e^2=-S$ is the hydrostatic pressure. The equilibrium of forces that act on the line of contact, $\gamma(1-\cos~\theta_\text{D})~=(1/2)\rho~g~e^2$, gives the thickness $e=2\kappa^{-1}\sin~(\theta_\text{D}/2)$, where the capillary length, $\kappa^{-1}=\sqrt{\gamma/(\rho~g)}$.
Figure 4
(Color online) (a) Capillary wrinkling length dynamics $\ell^*=\ell/\left[\bigg(\frac{K}{\gamma}\bigg)^{1/2}\kappa^{-1}\bigg(\frac{\Omega^{1/3}}{V^*}\bigg)^{3/5}\right]$; (b) capillary wrinkling number dynamics $N^*=N/\left[(\frac{\gamma}{D})^{1/4}\sqrt{\kappa^{-1}}\bigg(\frac{\eta~\Omega^{1/3}}{\dot{\gamma}}\bigg)^{3/10}\right]$.
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1