Capillary wrinkling scaling laws of floating elastic thin film with a liquid drop

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 61, Issue 2: 024721(2018) https://doi.org/10.1007/s11433-017-9116-5

Capillary wrinkling scaling laws of floating elastic thin film with a liquid drop

More info
  • ReceivedSep 25, 2017
  • AcceptedOct 10, 2017
  • PublishedDec 13, 2017

Abstract

There is no abstract available for this article.


Acknowledgment

The author wishes to thank Michael Sun of South African College Junior School, Cape Town, for taking the picture in Figure 1.


References

[1] Huang R., Suo Z.. J. Appl. Phys., 2002, 91: 1135-1142 CrossRef ADS Google Scholar

[2] Cerda E., Ravi-Chandar K., Mahadevan L.. Nature, 2002, 419: 579-580 CrossRef PubMed ADS Google Scholar

[3] Cerda E., Mahadevan L.. Phys. Rev. Lett., 2003, 90: 074302 CrossRef ADS Google Scholar

[4] Brochard-Wyart F.. Science, 2003, 300: 441-441 CrossRef PubMed Google Scholar

[5] Huang J., Juszkiewicz M., de Jeu W. H., Cerda E., Emrick T., Menon N., Russell T. P.. Science, 2007, 317: 650-653 CrossRef PubMed ADS Google Scholar

[6] Vella D., Adda-Bedia M., Cerda E.. Soft Matter, 2010, 6: 5778 CrossRef ADS Google Scholar

[7] Vella D., Ajdari A., Vaziri A., Boudaoud A.. Phys. Rev. Lett., 2011, 107: 174301 CrossRef PubMed ADS Google Scholar

[8] Zhao Y., Shao Z. C., Li G. Y., Zheng Y., Zhang W. Y., Li B., Cao Y., Feng X. Q.. Appl. Phys. Lett., 2017, 110: 231604 CrossRef ADS Google Scholar

[9] Liu J. L., Feng X. Q.. Acta Mech. Sin., 2012, 28: 928-940 CrossRef ADS Google Scholar

[10] Roman B., Bico J.. J. Phys.-Condens. Matter, 2010, 22: 493101 CrossRef PubMed ADS Google Scholar

[11] Liu J., Sun J., Mei Y.. J. Appl. Phys., 2013, 114: 044901-044901 CrossRef ADS Google Scholar

[12] P. W. Bridgman, Dimensional Analysis (Yale University Press, New Haven, 1922). Google Scholar

[13] L. I. Sedov, Similarity and Dimensional Analysis in Mechanics (Academic Press, New Yor, 1959). Google Scholar

[14] B. Sun, Dimensional Analysis and Lie Group (in Chinese) (China High Education Press, Beijing, 2016). Google Scholar

[15] B. Sun, Phys. and Eng. (in Chinese) 26, 11 (2016). Google Scholar

[16] Sun B. H.. Sci. China-Phys. Mech. Astron., 2017, 60: 104711 CrossRef Google Scholar

[17] P. G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003). Google Scholar

[18] Tanner L. H.. J. Phys. D-Appl. Phys., 1979, 12: 1473-1484 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) Typical wrinkling of elastic film; (b) typical capillary wrinkling of elastic film. The problem is to find the deformation wrinkling pattern pair $(N,\ell)$, where the wrinkling number is $N$ and the wrinkling length is $\ell$.

  • Figure 2

    (Color online) Spreading of a drop on a film surface in a total wetting regime. Tanner's law: $\theta_\text{D}\sim~t^{-3/10}$. In this paper, we obtained $r~\sim~t^{-3/5}$.

  • Figure 3

    (Color online) (a) Liquid drops of increasing size on a sheet of film. Gravity causes the largest drops to flatten. (b) Equilibrium of the forces (per unit length of the line of contact) act on the edge of a puddle. $\tilde{P}=(1/2)\rho~g~e^2=-S$ is the hydrostatic pressure. The equilibrium of forces that act on the line of contact, $\gamma(1-\cos~\theta_\text{D})~=(1/2)\rho~g~e^2$, gives the thickness $e=2\kappa^{-1}\sin~(\theta_\text{D}/2)$, where the capillary length, $\kappa^{-1}=\sqrt{\gamma/(\rho~g)}$.

  • Figure 4

    (Color online) (a) Capillary wrinkling length dynamics $\ell^*=\ell/\left[\bigg(\frac{K}{\gamma}\bigg)^{1/2}\kappa^{-1}\bigg(\frac{\Omega^{1/3}}{V^*}\bigg)^{3/5}\right]$; (b) capillary wrinkling number dynamics $N^*=N/\left[(\frac{\gamma}{D})^{1/4}\sqrt{\kappa^{-1}}\bigg(\frac{\eta~\Omega^{1/3}}{\dot{\gamma}}\bigg)^{3/10}\right]$.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1