NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 60, Issue 12: 120314(2017) https://doi.org/10.1007/s11433-017-9113-4

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

More info
  • ReceivedOct 9, 2017
  • AcceptedOct 11, 2017
  • PublishedOct 12, 2017
PACS numbers

Abstract

The rapid development of superconducting nanowire single-photon detectors over the past decade has led to numerous advances in quantum information technology. The record for the best system detection efficiency at an incident photon wavelength of 1550?nm is 93%. This performance was attained from a superconducting nanowire single-photon detector made of amorphous WSi; such detectors are usually operated at sub-Kelvin temperatures. In this study, we first demonstrate superconducting nanowire single-photon detectors made of polycrystalline NbN with system detection efficiency of 90.2% for 1550-nm-wavelength photons at 2.1?K, accessible with a compact cryocooler. The system detection efficiency saturated at 92.1% when the temperature was lowered to 1.8?K. We expect the results lighten the practical and high performance superconducting nanowire single-photon detectors to quantum information and other high-end applications.


Funded by

Strategic Priority Research Program (B) of the Chinese Academy of Sciences(XDB04010200)

National Natural Science Foundation of China(91121022)

National Key R&D Program of China(2017YFA0304000)

Science and Technology Commission of Shanghai Municipality(16JC1400402)


Acknowledgment

This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0304000), Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04010200), the National Natural Science Foundation of China (Grant Nos. 91121022, 61401441, and 61401443), and the Science and Technology Commission of Shanghai Municipality (Grant No. 16JC1400402). The authors would like to thank M. Wang, Z. J. Li, and B. Gao from SIMIT for technical support during the ultra-low temperature measurements.


Supplement

The supporting information is available online at http://phys.scichina.com and http://link.springer.com/journal/11433. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Giustina M., Versteegh M. A. M., Wengerowsky S., Handsteiner J., Hochrainer A., Phelan K., Steinlechner F., Kofler J., Larsson J. ?., Abellán C., Amaya W., Pruneri V., Mitchell M. W., Beyer J., Gerrits T., Lita A. E., Shalm L. K., Nam S. W., Scheidl T., Ursin R., Wittmann B., Zeilinger A.. Phys. Rev. Lett., 2015, 115: 250401 CrossRef PubMed ADS arXiv Google Scholar

[2] Shalm L. K., Meyer-Scott E., Christensen B. G., Bierhorst P., Wayne M. A., Stevens M. J., Gerrits T., Glancy S., Hamel D. R., Allman M. S., Coakley K. J., Dyer S. D., Hodge C., Lita A. E., Verma V. B., Lambrocco C., Tortorici E., Migdall A. L., Zhang Y., Kumor D. R., Farr W. H., Marsili F., Shaw M. D., Stern J. A., Abellán C., Amaya W., Pruneri V., Jennewein T., Mitchell M. W., Kwiat P. G., Bienfang J. C., Mirin R. P., Knill E., Nam S. W.. Phys. Rev. Lett., 2015, 115: 250402 CrossRef PubMed ADS arXiv Google Scholar

[3] Sun Q. C., Mao Y. L., Chen S. J., Zhang W., Jiang Y. F., Zhang Y. B., Zhang W. J., Miki S., Yamashita T., Terai H., Jiang X., Chen T. Y., You L. X., Chen X. F., Wang Z., Fan J. Y., Zhang Q., Pan J. W.. Nat. Photon, 2016, 10: 671 CrossRef ADS Google Scholar

[4] Tang Y. L., Yin H. L., Chen S. J., Liu Y., Zhang W. J., Jiang X., Zhang L., Wang J., You L. X., Guan J. Y., Yang D. X., Wang Z., Liang H., Zhang Z., Zhou N., Ma X., Chen T. Y., Zhang Q., Pan J. W.. Phys. Rev. Lett., 2014, 113: 190501 CrossRef PubMed ADS arXiv Google Scholar

[5] Knill E., Laflamme R., Milburn G. J.. Nature, 2001, 409: 46 CrossRef PubMed Google Scholar

[6] R. H. Hadfield, G. Johansson, Superconducting Devices in Quantum Optics (Springer, Berlin, 2016). Google Scholar

[7] Zhang J., Itzler M. A., Zbinden H., Pan J. W.. Light Sci Appl, 2015, 4: e286 CrossRef Google Scholar

[8] Hu X., Cheng Y., Gu C., Zhu X., Liu H.. Sci. Bull., 2015, 60: 1980 CrossRef Google Scholar

[9] Lita A. E., Miller A. J., Nam S. W.. Opt. Express, 2008, 16: 3032 CrossRef ADS Google Scholar

[10] Marsili F., Verma V. B., Stern J. A., Harrington S., Lita A. E., Gerrits T., Vayshenker I., Baek B., Shaw M. D., Mirin R. P., Nam S. W.. Nat. Photon, 2013, 7: 210 CrossRef ADS arXiv Google Scholar

[11] Verma V. B., Korzh B., Bussières F., Horansky R. D., Dyer S. D., Lita A. E., Vayshenker I., Marsili F., Shaw M. D., Zbinden H., Mirin R. P., Nam S. W.. Opt. Express, 2015, 23: 33792 CrossRef ADS arXiv Google Scholar

[12] Dorenbos S. N., Forn-Díaz P., Fuse T., Verbruggen A. H., Zijlstra T., Klapwijk T. M., Zwiller V.. Appl. Phys. Lett., 2011, 98: 251102 CrossRef ADS Google Scholar

[13] Engel A., Aeschbacher A., Inderbitzin K., Schilling A., Il’in K., Hofherr M., Siegel M., Semenov A., Hübers H. W.. Appl. Phys. Lett., 2012, 100: 062601 CrossRef ADS arXiv Google Scholar

[14] Korneeva Y. P., Mikhailov M. Y., Pershin Y. P., Manova N. N., Divochiy A. V., Vakhtomin Y. B., Korneev A. A., Smirnov K. V., Sivakov A. G., Devizenko A. Y., Goltsman G. N.. Supercond. Sci. Technol., 2014, 27: 095012 CrossRef ADS arXiv Google Scholar

[15] Semenov A., Engel A., Hübers H. W., Il’in K., Siegel M.. Eur. Phys. J. B, 2005, 47: 495 CrossRef ADS Google Scholar

[16] Marsili F., Najafi F., Dauler E., Bellei F., Hu X., Csete M., Molnar R. J., Berggren K. K.. Nano Lett., 2011, 11: 2048 CrossRef PubMed ADS arXiv Google Scholar

[17] Renema J. J., Gaudio R., Wang Q., Zhou Z., Gaggero A., Mattioli F., Leoni R., Sahin D., de Dood M. J. A., Fiore A., van Exter M. P.. Phys. Rev. Lett., 2014, 112: 117604 CrossRef PubMed ADS Google Scholar

[18] Rosenberg D., Kerman A. J., Molnar R. J., Dauler E. A.. Opt. Express, 2013, 21: 1440 CrossRef ADS Google Scholar

[19] Yamashita T., Miki S., Terai H., Wang Z.. Opt. Express, 2013, 21: 27177 CrossRef ADS arXiv Google Scholar

[20] Chen S., You L., Zhang W., Yang X., Li H., Zhang L., Wang Z., Xie X.. Opt. Express, 2015, 23: 10786 CrossRef ADS arXiv Google Scholar

[21] Miki S., Yabuno M., Yamashita T., Terai H.. Opt. Express, 2017, 25: 6796 CrossRef ADS arXiv Google Scholar

[22] Zhang L., Wan C., Gu M., Xu R., Zhang S., Kang L., Chen J., Wu P.. Sci. Bull., 2015, 60: 1434 CrossRef Google Scholar

[23] Delacour C., Claudon J., Poizat J. P., Pannetier B., Bouchiat V., Espiau de Lamaestre R., Villegier J. C., Tarkhov M., Korneev A., Voronov B., Gol’tsman G.. Appl. Phys. Lett., 2007, 90: 191116 CrossRef ADS Google Scholar

[24] Semenov A., Günther B., B?ttger U., Hübers H. W., Bartolf H., Engel A., Schilling A., Ilin K., Siegel M., Schneider R., Gerthsen D., Gippius N. A.. Phys. Rev. B, 2009, 80: 054510 CrossRef ADS Google Scholar

[25] Smirnov K., Vachtomin Y., Divochiy A., Antipov A., Goltsman G.. Appl. Phys. Express, 2015, 8: 022501 CrossRef ADS Google Scholar

[26] Polyakov S. V., Migdall A. L.. Opt. Express, 2007, 15: 1390 CrossRef ADS Google Scholar

[27] Bardeen J.. Rev. Mod. Phys., 1962, 34: 667 CrossRef ADS Google Scholar

[28] Henrich D., Reichensperger P., Hofherr M., Meckbach J. M., Il’in K., Siegel M., Semenov A., Zotova A., Vodolazov D. Y.. Phys. Rev. B, 2012, 86: 144504 CrossRef ADS arXiv Google Scholar

[29] Yin H. L., Chen T. Y., Yu Z. W., Liu H., You L. X., Zhou Y. H., Chen S. J., Mao Y., Huang M. Q., Zhang W. J., Chen H., Li M. J., Nolan D., Zhou F., Jiang X., Wang Z., Zhang Q., Wang X. B., Pan J. W.. Phys. Rev. Lett., 2016, 117: 190501 CrossRef PubMed ADS arXiv Google Scholar

[30] Wang X. L., Chen L. K., Li W., Huang H. L., Liu C., Chen C., Luo Y. H., Su Z. E., Wu D., Li Z. D., Lu H., Hu Y., Jiang X., Peng C. Z., Li L., Liu N. L., Chen Y. A., Lu C. Y., Pan J. W.. Phys. Rev. Lett., 2016, 117: 210502 CrossRef PubMed ADS arXiv Google Scholar

[31] Zhang W. J., You L. X., Li H., Huang J., Lv C. L., Zhang L., Liu X. Y., Wu J. J., Wang Z., Xie X. M.. arXiv Google Scholar

[32] Zadeh I. E., Johannes W. N. L., Gourgues R. B. M., Steinmetz V., Bulgarini G., Dobrovolskiy S. M., Zwiller V., Dorenbos S. N.. arXiv Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1