In order to obtain high-quality superconducting qubits, we employed a cold-development technique, using temperatures down to ?20°C, to fabricate Al/AlO
the National Natural Science Foundation of China(Grant,Nos.,61727805,61771234,61501220,61611130069,61521001)
the National Key Research and Devlopment Programme of China(Grant,No.,2016YFA0301802)
Jiangsu Provincial Natural Science Fund(Grant,Nos.,BK20150561,BK20160635)
the Fundamental Research Funds for the Central Universities
and Nanjing University Innovation and Creative Program for PhD candidate(Grant,No.,CXCY17-15)
This work was supported by the National Natural Science Foundation of China (Grant Nos. 61727805, 61771234, 61501220, 61611130069, and 61521001), the National Key Research and Devlopment Programme of China (Grant No. 2016YFA0301802), Jiangsu Provincial Natural Science Fund (Grant Nos. BK20150561, and BK20160635), the Fundamental Research Funds for the Central Universities, and Nanjing University Innovation and Creative Program for PhD Candidate (Grant No. CXCY17-15). We thank Haifeng Yu for his valuable discussion.
[1] Eichler C., Salathe Y., Mlynek J., Schmidt S., Wallraff A.. Phys. Rev. Lett., 2014, 113: 110502 CrossRef PubMed Google Scholar
[2]
J. Clarke, and A. I. Braginski,
[3] Kirichenko D. E., Sarwana S., Kirichenko A. F.. IEEE Trans. Appl. Supercond., 2011, 21: 776 CrossRef Google Scholar
[4]
H. Grabert, and M. Devoret,
[5] Majer J., Chow J. M., Gambetta J. M., Koch J., Johnson B. R., Schreier J. A., Frunzio L., Schuster D. I., Houck A. A., Wallraff A., Blais A., Devoret M. H., Girvin S. M., Schoelkopf R. J.. Nature, 2007, 449: 443 CrossRef PubMed ADS arXiv Google Scholar
[6] Lin Y. H., Nguyen L. B., Grabon N., San Miguel J., Pankratova N., Manucharyan V. E.. Phys. Rev. Lett., 2018, 120: 150503 CrossRef PubMed ADS Google Scholar
[7] Kono S., Koshino K., Tabuchi Y., Noguchi A., Nakamura Y.. Nat. Phys., 2018, 14: 546 CrossRef ADS arXiv Google Scholar
[8] Wallraff A., Schuster D. I., Blais A., Frunzio L., Huang R. S., Majer J., Kumar S., Girvin S. M., Schoelkopf R. J.. Nature, 2004, 431: 162 CrossRef PubMed ADS Google Scholar
[9] Jin X. Y., Kamal A., Sears A. P., Gudmundsen T., Hover D., Miloshi J., Slattery R., Yan F., Yoder J., Orlando T. P., Gustavsson S., Oliver W. D.. Phys. Rev. Lett., 2015, 114: 240501 CrossRef PubMed Google Scholar
[10] Eichler C., Lang C., Fink J. M., Govenius J., Filipp S., Wallraff A.. Phys. Rev. Lett., 2012, 109: 240501 CrossRef PubMed Google Scholar
[11] Liu Y., Lan D., Tan X., Zhao J., Zhao P., Li M., Zhang K., Dai K., Li Z., Liu Q., Huang S., Xue G., Xu P., Yu H., Zhu S. L., Yu Y.. Appl. Phys. Lett., 2015, 107: 202601 CrossRef ADS Google Scholar
[12] de Lange G., Ristè D., Tiggelman M., Eichler C., Tornberg L., Johansson G., Wallraff A., Schouten R., DiCarlo L.. Phys. Rev. Lett., 2014, 112: 080501 CrossRef ADS arXiv Google Scholar
[13]
J. M. Martinis, and A. Megrant, arXiv:
[14] Dolan G. J.. Appl. Phys. Lett., 1977, 31: 337 CrossRef ADS Google Scholar
[15] Zhang K., Li M. M., Liu Q., Yu H. F., Yu Y.. Chin. Phys. B, 2017, 26: 078501 CrossRef Google Scholar
[16] Rooks M. J., Kratschmer E., Viswanathan R., Katine J., Fontana R. E., MacDonald S. A.. J. Vac. Sci. Technol. B, 2002, 20: 2937 CrossRef ADS Google Scholar
[17] Kim M. S., Lee D. H., Cha Y. H., Kim K. B., Jung S. H., Lee J. K., O B. H., Lee S. G., Park S. G.. Microelectron. Eng., 2014, 123: 33 CrossRef Google Scholar
[18] Cord B., Lutkenhaus J., Berggren K. K.. J. Vac. Sci. Technol. B, 2007, 25: 2013 CrossRef ADS Google Scholar
[19]
A. Holmberg, J. Reinspach, M. Lindblom, E. Chubarova, M. Bertilson, O. von Hofsten, D. Nilsson, M. Selin, D. Larsson, P. Skoglund, U. Lundstr?m, P. Takman, U. Vogt, and H. M. Hertz, in AIP Conference Proceedings
[20] Gorelick S., Vila-Comamala J., Guzenko V. A., David C.. Microelectron. Eng., 2011, 88: 2259 CrossRef Google Scholar
[21] Mohammad M. A., Guthy C., Evoy S., Dew S. K., Stepanova M.. J. Vac. Sci. Technol. B, 2010, 28: C6P36 CrossRef Google Scholar
[22] Reinspach J., Lindblom M., von Hofsten O., Bertilson M., Hertz H. M., Holmberg A.. J. Vac. Sci. Technol. B, 2009, 27: 2593 CrossRef ADS Google Scholar
[23] Hu W. W., Sarveswaran K., Lieberman M., Bernstein G. H.. J. Vac. Sci. Technol. B, 2004, 22: 1711 CrossRef Google Scholar
[24] Simmonds R. W., Lang K. M., Hite D. A., Nam S., Pappas D. P., Martinis J. M.. Phys. Rev. Lett., 2004, 93: 077003 CrossRef PubMed Google Scholar
[25] Reed M. D., DiCarlo L., Johnson B. R., Sun L., Schuster D. I., Frunzio L., Schoelkopf R. J.. Phys. Rev. Lett., 2010, 105: 173601 CrossRef PubMed ADS arXiv Google Scholar
[26] Paik H., Schuster D. I., Bishop L. S., Kirchmair G., Catelani G., Sears A. P., Johnson B. R., Reagor M. J., Frunzio L., Glazman L. I., Girvin S. M., Devoret M. H., Schoelkopf R. J.. Phys. Rev. Lett., 2011, 107: 240501 CrossRef PubMed Google Scholar
[27] Muhammad M., Buswell S. C., Dew S. K., Stepanova M.. J. Vac. Sci. Technol. B, 2011, 29: 06F304 CrossRef ADS Google Scholar
[28] Gorelick S., Guzenko V. A., Vila-Comamala J., David C.. Nanotechnology, 2010, 21: 295303 CrossRef PubMed Google Scholar
[29]
G. M. Robert,
Figure 1
(Color online) (a) Schematic view of the double-angle aluminium-deposition process using a bridge-free technique. (b) The cross-shaped gap after development. (c) Bottom layer of Al deposited at an angle
Figure 2
(Color online) (a) Optical image of a 3D transmon qubit. (b) Optical microscope image of the microwave antenna integrated with the Josephson junction. (c) Scanning electron microscope (SEM) image of the Josephson junction with the size of
Figure 3
(Color online) Time-domain measurement of the coherence of a 3D transmon qubit. (a) Rabi oscillation and (b) relaxation from the first excited state |1>.
Figure 4
(Color online) (a) SEM images of four typical Al/AlO
Figure 5
(Color online) (a) SEM images of four typical Al/AlO
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1