Fabrication of Al/AlO<sub><italic>x</italic></sub>/Al Josephson junctions on silicon and sapphire substrates using a cold-development technique

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62, Issue 6: 067011(2019) https://doi.org/10.1007/s11433-018-9298-3

Fabrication of Al/AlOx/Al Josephson junctions on silicon and sapphire substrates using a cold-development technique

More info
  • ReceivedAug 4, 2018
  • AcceptedSep 4, 2018
  • PublishedDec 11, 2018
PACS numbers

Abstract

In order to obtain high-quality superconducting qubits, we employed a cold-development technique, using temperatures down to ?20°C, to fabricate Al/AlOx/Al Josephson junctions. Cold development greatly reduced the sensitivity of the electron-beam resist to the developer, eliminated molecules of the electron-beam resist at trench edges, and improved the repeatability and reliability of the nanopatterning process. The fabricated samples have well-defined geometries and increased dose margins, with lateral sizes of 100?nm×100?nm on both silicon and sapphire substrates. Together with the bridge-free fabrication method we used in these experiments, we believe that the cold-development technique can play an important role in quantum information technology that employs superconducting qubits.


Funded by

the National Natural Science Foundation of China(Grant,Nos.,61727805,61771234,61501220,61611130069,61521001)

the National Key Research and Devlopment Programme of China(Grant,No.,2016YFA0301802)

Jiangsu Provincial Natural Science Fund(Grant,Nos.,BK20150561,BK20160635)

the Fundamental Research Funds for the Central Universities

and Nanjing University Innovation and Creative Program for PhD candidate(Grant,No.,CXCY17-15)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61727805, 61771234, 61501220, 61611130069, and 61521001), the National Key Research and Devlopment Programme of China (Grant No. 2016YFA0301802), Jiangsu Provincial Natural Science Fund (Grant Nos. BK20150561, and BK20160635), the Fundamental Research Funds for the Central Universities, and Nanjing University Innovation and Creative Program for PhD Candidate (Grant No. CXCY17-15). We thank Haifeng Yu for his valuable discussion.


References

[1] Eichler C., Salathe Y., Mlynek J., Schmidt S., Wallraff A.. Phys. Rev. Lett., 2014, 113: 110502 CrossRef PubMed Google Scholar

[2] J. Clarke, and A. I. Braginski, The SQUID Handbook (Weinhein, Wiley-VCH, 2004). Google Scholar

[3] Kirichenko D. E., Sarwana S., Kirichenko A. F.. IEEE Trans. Appl. Supercond., 2011, 21: 776 CrossRef Google Scholar

[4] H. Grabert, and M. Devoret, Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (New York, Plenum Press, 1992). Google Scholar

[5] Majer J., Chow J. M., Gambetta J. M., Koch J., Johnson B. R., Schreier J. A., Frunzio L., Schuster D. I., Houck A. A., Wallraff A., Blais A., Devoret M. H., Girvin S. M., Schoelkopf R. J.. Nature, 2007, 449: 443 CrossRef PubMed ADS arXiv Google Scholar

[6] Lin Y. H., Nguyen L. B., Grabon N., San Miguel J., Pankratova N., Manucharyan V. E.. Phys. Rev. Lett., 2018, 120: 150503 CrossRef PubMed ADS Google Scholar

[7] Kono S., Koshino K., Tabuchi Y., Noguchi A., Nakamura Y.. Nat. Phys., 2018, 14: 546 CrossRef ADS arXiv Google Scholar

[8] Wallraff A., Schuster D. I., Blais A., Frunzio L., Huang R. S., Majer J., Kumar S., Girvin S. M., Schoelkopf R. J.. Nature, 2004, 431: 162 CrossRef PubMed ADS Google Scholar

[9] Jin X. Y., Kamal A., Sears A. P., Gudmundsen T., Hover D., Miloshi J., Slattery R., Yan F., Yoder J., Orlando T. P., Gustavsson S., Oliver W. D.. Phys. Rev. Lett., 2015, 114: 240501 CrossRef PubMed Google Scholar

[10] Eichler C., Lang C., Fink J. M., Govenius J., Filipp S., Wallraff A.. Phys. Rev. Lett., 2012, 109: 240501 CrossRef PubMed Google Scholar

[11] Liu Y., Lan D., Tan X., Zhao J., Zhao P., Li M., Zhang K., Dai K., Li Z., Liu Q., Huang S., Xue G., Xu P., Yu H., Zhu S. L., Yu Y.. Appl. Phys. Lett., 2015, 107: 202601 CrossRef ADS Google Scholar

[12] de Lange G., Ristè D., Tiggelman M., Eichler C., Tornberg L., Johansson G., Wallraff A., Schouten R., DiCarlo L.. Phys. Rev. Lett., 2014, 112: 080501 CrossRef ADS arXiv Google Scholar

[13] J. M. Martinis, and A. Megrant, arXiv: 1410.5793 (2014). Google Scholar

[14] Dolan G. J.. Appl. Phys. Lett., 1977, 31: 337 CrossRef ADS Google Scholar

[15] Zhang K., Li M. M., Liu Q., Yu H. F., Yu Y.. Chin. Phys. B, 2017, 26: 078501 CrossRef Google Scholar

[16] Rooks M. J., Kratschmer E., Viswanathan R., Katine J., Fontana R. E., MacDonald S. A.. J. Vac. Sci. Technol. B, 2002, 20: 2937 CrossRef ADS Google Scholar

[17] Kim M. S., Lee D. H., Cha Y. H., Kim K. B., Jung S. H., Lee J. K., O B. H., Lee S. G., Park S. G.. Microelectron. Eng., 2014, 123: 33 CrossRef Google Scholar

[18] Cord B., Lutkenhaus J., Berggren K. K.. J. Vac. Sci. Technol. B, 2007, 25: 2013 CrossRef ADS Google Scholar

[19] A. Holmberg, J. Reinspach, M. Lindblom, E. Chubarova, M. Bertilson, O. von Hofsten, D. Nilsson, M. Selin, D. Larsson, P. Skoglund, U. Lundstr?m, P. Takman, U. Vogt, and H. M. Hertz, in AIP Conference Proceedings 1365, 18 (2010). Google Scholar

[20] Gorelick S., Vila-Comamala J., Guzenko V. A., David C.. Microelectron. Eng., 2011, 88: 2259 CrossRef Google Scholar

[21] Mohammad M. A., Guthy C., Evoy S., Dew S. K., Stepanova M.. J. Vac. Sci. Technol. B, 2010, 28: C6P36 CrossRef Google Scholar

[22] Reinspach J., Lindblom M., von Hofsten O., Bertilson M., Hertz H. M., Holmberg A.. J. Vac. Sci. Technol. B, 2009, 27: 2593 CrossRef ADS Google Scholar

[23] Hu W. W., Sarveswaran K., Lieberman M., Bernstein G. H.. J. Vac. Sci. Technol. B, 2004, 22: 1711 CrossRef Google Scholar

[24] Simmonds R. W., Lang K. M., Hite D. A., Nam S., Pappas D. P., Martinis J. M.. Phys. Rev. Lett., 2004, 93: 077003 CrossRef PubMed Google Scholar

[25] Reed M. D., DiCarlo L., Johnson B. R., Sun L., Schuster D. I., Frunzio L., Schoelkopf R. J.. Phys. Rev. Lett., 2010, 105: 173601 CrossRef PubMed ADS arXiv Google Scholar

[26] Paik H., Schuster D. I., Bishop L. S., Kirchmair G., Catelani G., Sears A. P., Johnson B. R., Reagor M. J., Frunzio L., Glazman L. I., Girvin S. M., Devoret M. H., Schoelkopf R. J.. Phys. Rev. Lett., 2011, 107: 240501 CrossRef PubMed Google Scholar

[27] Muhammad M., Buswell S. C., Dew S. K., Stepanova M.. J. Vac. Sci. Technol. B, 2011, 29: 06F304 CrossRef ADS Google Scholar

[28] Gorelick S., Guzenko V. A., Vila-Comamala J., David C.. Nanotechnology, 2010, 21: 295303 CrossRef PubMed Google Scholar

[29] G. M. Robert, Physical Chemistry (Amsterdam, Elsevier, 2000), p. 387. Google Scholar

  • Figure 1

    (Color online) (a) Schematic view of the double-angle aluminium-deposition process using a bridge-free technique. (b) The cross-shaped gap after development. (c) Bottom layer of Al deposited at an angle θ1, covered with an in-situ oxidized layer. (d) Top Al layer deposited at an angle θ2. (e) The as-prepared Al/AlOx/Al Josephson junction after lift-off of the resist.

  • Figure 2

    (Color online) (a) Optical image of a 3D transmon qubit. (b) Optical microscope image of the microwave antenna integrated with the Josephson junction. (c) Scanning electron microscope (SEM) image of the Josephson junction with the size of 246?nm×275?nm.

  • Figure 3

    (Color online) Time-domain measurement of the coherence of a 3D transmon qubit. (a) Rabi oscillation and (b) relaxation from the first excited state |1>.

  • Figure 4

    (Color online) (a) SEM images of four typical Al/AlOx/Al Josephson junctions on silicon substrates. The four figures correspond to the same exposure dose (3500?μC/cm2) but to the different development temperatures of 22, 6, ?10, and ?20°C, respectively. (b) Dependence of the normalized junction area on the development temperature. The dotted horizontal line represents the nominal area of 100?nm×100?nm. (c) The acceptable dose windows at different development temperatures for the junctions on silicon substrates.

  • Figure 5

    (Color online) (a) SEM images of four typical Al/AlOx/Al Josephson junctions on sapphire substrates. The four figures correspond to the same exposure dose of 3500?μC/cm2 but to the different development temperatures of 22, 6, ?10, and ?20°C, respectively. (b) Dependence of the normalized junction area on the development temperature. The dotted horizontal line represents the nominal area of 100?nm×100?nm. (c) The acceptable dose windows at different development temperatures for the junctions on sapphire substrates.

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1