Effects of dimensional wall temperature on velocity-temperature correlations in supersonic turbulent channel flow <sc>of thermally perfect gas</sc>

logo

SCIENCE CHINA Physics, Mechanics & Astronomy, Volume 62, Issue 6: 064711(2019) https://doi.org/10.1007/s11433-018-9318-4

Effects of dimensional wall temperature on velocity-temperature correlations in supersonic turbulent channel flow of thermally perfect gas

More info
  • ReceivedJul 25, 2018
  • AcceptedOct 30, 2018
  • PublishedJan 25, 2019
PACS numbers

Abstract

Direct numerical simulations of temporally evolving supersonic turbulent channel flows of thermally perfect gas are conducted at Mach number 3.0 and Reynolds number 4800 for various values of the dimensional wall temperature to study the influence of the latter on the velocity-temperature correlations. The results show that in a fully developed turbulent channel flow, as the dimensional wall temperature increases, there is little change in the mean velocity, but the mean temperature decreases. The mean temperature is found to be a quadratic function of the mean velocity, the curvature of which increases with increasing dimensional wall temperature. The concept of “recovery enthalpy” provides a connection between the mean velocity and the mean temperature, and is independent of dimensional wall temperature. The right tails of probability density function of the streamwise velocity fluctuation grows with increasing dimensional wall temperature. The dimensional wall temperature does not have a significant influence on the Reynolds analogy factor or strong Reynolds analogy (SRA). The modifications of SRA by Huang et al. and Zhang et al. provide reasonably good results, which are better than those of the modifications by Cebeci and Smith and by Rubesin.


Funded by

the National Natural Science Foundation of China(Grant,Nos.,11502236,51536008,91852203)

the National Key Research and Development Program of China(Grant,No.,2016YFA0401200)

Science Challenge Project(Grant,No.,TZ2016001)

and the Natural Science Foundation of Zhejiang Province(Grant,No.,LQ16E090005)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11502236, 51536008, and 91852203), the National Key Research and Development Program of China (Grant No. 2016YFA0401200), Science Challenge Project (Grant No. TZ2016001), and the Natural Science Foundation of Zhejiang Province (Grant No. LQ16E090005).


References

[1] Fulachier L., Anselmet F., Borghi R., Paranthoen P.. 1989, 203: 577 CrossRef ADS Google Scholar

[2] Brun C., Petrovan Boiarciuc M., Haberkorn M., Comte P.. 2008, 22: 189 CrossRef ADS Google Scholar

[3] Bradshaw P.. 1977, 9: 33 CrossRef ADS Google Scholar

[4] Lele S. K.. 1994, 26: 211 CrossRef ADS Google Scholar

[5] H. Schlichting, Boundary-layer theory 3rd (McGraw-Hill, New York, 1968). Google Scholar

[6] Spina E. F., Smits A. J., Robinson S. K.. 1994, 26: 287 CrossRef ADS Google Scholar

[7] A. Busemann, In: Leipzig Geest, Portig (Handbuch der physik, 1931). Google Scholar

[8] L. Crocco, L’Aerotecnica 12, 181 (1932). Google Scholar

[9] M. V. Morkovin, Mécanique de la Turbulence (CNRS, Metz, 1961), p. 367. Google Scholar

[10] A. J. Smits, and J. P. Dussauge, Turbulent Shear Layers in Supersonic Flow (Springer, Berlin, 2006). Google Scholar

[11] Reynolds O.. 1961, 3: 163 CrossRef Google Scholar

[12] van Driest E. R.. 2003, 40: 1012 CrossRef ADS Google Scholar

[13] A. Walz, Boundary Layers of Flow and Temperature (MIT Press, Cambridge, 1969). Google Scholar

[14] Whitfield D. L., High M. D.. 1977, 15: 431 CrossRef ADS Google Scholar

[15] Laderman A. J., Demetriades A.. 1974, 63: 121 CrossRef ADS Google Scholar

[16] Laderman A. J.. 1978, 16: 723 CrossRef ADS Google Scholar

[17] Owen F. K., Horstman C. C., Kussoy M. I.. 1975, 70: 393 CrossRef ADS Google Scholar

[18] Tummers M. J., van Veen E. H., George N., Rodink R., Hanjali? K.. 2004, 37: 364 CrossRef ADS Google Scholar

[19] Pietri L., Amielh M., Anselmet F.. 2000, 21: 22 CrossRef Google Scholar

[20] Wang Y. Q., Liu C. Q.. 2017, 60: 114712 CrossRef ADS Google Scholar

[21] T. B. Gatski, and J. P. Bonnet, Compressibility, Turbulence and High Speed Flow (Elsevier, Amsterdam, 2009). Google Scholar

[22] Pirozzoli S., Grasso F., Gatski T. B.. 2004, 16: 530 CrossRef ADS Google Scholar

[23] Maeder T., Adams N. A., Kleiser L.. 2001, 429: 187 CrossRef ADS Google Scholar

[24] Duan L., Beekman I., Martín M. P.. 2010, 655: 419 CrossRef ADS Google Scholar

[25] Duan L., Beekman I., Martín M. P.. 2011, 672: 245 CrossRef ADS Google Scholar

[26] Zhang Y. S., Bi W. T., Hussain F., She Z. S.. 2014, 739: 392 CrossRef ADS Google Scholar

[27] Duan L., Martín M. P.. 2011, 684: 25 CrossRef ADS Google Scholar

[28] Guarini S. E., Moser R. D., Shariff K., Wray A.. 2000, 414: 1 CrossRef ADS Google Scholar

[29] Gaviglio J.. 1987, 30: 911 CrossRef Google Scholar

[30] Huang P. G., Coleman G. N., Bradshaw P.. 1995, 305: 185 CrossRef ADS Google Scholar

[31] Lechner R., Sesterhenn J., Friedrich R.. 2001, 2: N1 CrossRef ADS Google Scholar

[32] T. Cebeci, and A. M. O. Smith, Analysis of Turbulent Boundary Layers (Academic Press, New York, 1974). Google Scholar

[33] M. W. Rubesin, Extra Compressibility Terms for Favre-Averaged Two-Equation Models of Inhomogeneous Turbulent Flows, Technical Report (NASA, 1990). Google Scholar

[34] Liang X., Li X. L.. 2013, 56: 1408 CrossRef ADS Google Scholar

[35] Coleman G. N., Kim J., Moser R. D.. 1995, 305: 159 CrossRef ADS Google Scholar

[36] Tamano S., Morinishi Y.. 2006, 548: 361 CrossRef ADS Google Scholar

[37] Morinishi Y., Tamano S., Nakabayashi K.. 2004, 502: 273 CrossRef ADS Google Scholar

[38] J. D. Anderson, Hypersonic and High Temperature Gas Dynamics (AIAA, New York, 2000). Google Scholar

[39] O. Marxen, T. Magin, G. Iaccarino, and E. S. G. Shaqfeh, Hypersonic boundary-layer instability with chemical reactions, AIAA Paper 2010-0707, 2010. Google Scholar

[40] Jia W., Cao W.. 2010, 31: 979 CrossRef Google Scholar

[41] Chen X. P., Li X. P., Dou H.-S., Zhu Z. C.. 2011, 41: 969 CrossRef ADS Google Scholar

[42] Chen X., Li X., Dou H. S., Zhu Z.. 2018, 19: 365 CrossRef Google Scholar

[43] Chen Z., Yu C. P., Li L., Li X. L.. 2016, 59: 664702 CrossRef ADS Google Scholar

[44] Hu Y. C., Bi W. T., Li S. Y., She Z. S.. 2017, 60: 124711 CrossRef ADS Google Scholar

[45] Li X. L., Fu D. X., Ma Y. W., Liang X.. 2010, 53: 1651 CrossRef ADS Google Scholar

[46] Li X., Fu D., Ma Y.. 2008, 46: 2899 CrossRef ADS Google Scholar

[47] Li X., Fu D., Ma Y.. 2010, 22: 025105 CrossRef ADS Google Scholar

[48] Jiang G. S., Shu C. W.. 1996, 126: 202 CrossRef ADS Google Scholar

[49] J. Fan, Chin. J. Theor. Appl. Mech. 42, 591 (2010) (in Chinese). Google Scholar

[50] S. B. Pope, Turbulence Flow (Cambridge University Press, Cambridge, 2001). Google Scholar

[51] Wang J., Gotoh T., Watanabe T.. 2017, 2: 053401 CrossRef ADS Google Scholar

[52] Roy C. J., Blottner F. G.. 2006, 42: 469 CrossRef ADS Google Scholar

[53] Modesti D., Pirozzoli S.. 2016, 59: 33 CrossRef Google Scholar

  • Figure 1

    (Color online) Distribution of vibrational energy excited degree for different dimensional wall temperature.

  • Figure 2

    (Color online) Distributions of mean velocity (a) and mean temperature (b) for different dimensional wall temperature.

  • Figure 3

    (Color online) Distribution of van Driest transformed velocity.

  • Figure 4

    (Color online) Distributions of RMS velocity (a) and RMS temperature fluctuations (b) for different dimensional wall temperature.

  • Figure 5

    (Color online) Distributions of turbulent Mach number (a) and RMS Mach number fluctuation (b) for different dimensional wall temperature.

  • Figure 6

    (Color online) PDFs of streamwise velocity fluctuation (a) and temperature fluctuation (b) near the wall (1?|y|=0.04) for different dimensional wall temperature.

  • Figure 7

    (Color online) PDFs of streamwise velocity fluctuation with the associated sign of temperature fluctuation (a) and temperature fluctuation with the associated sign of streamwise velocity fluctuation (b) near the wall (1?|y|=0.04) for different dimensional wall temperature.

  • Figure 8

    (Color online) Relationship between mean temperature and mean streamwise velocity for WT5 (a) and different dimensional wall temperature (b).

  • Figure 9

    (Color online) Distribution of “Recovery enthalpy” hr* versus mean streamwise {u}/ue for different dimensional wall temperature.

  • Figure 10

    (Color online) Distributions of SRA (a), ESRA (b), GSRA (c), RSRA (d), HSRA (e) and GHSRA (f) for different dimensional wall temperature.

  • Figure 11

    (Color online) (a) Distribution of RuT for different dimensional wall temperature; (b) joint probability density of instantaneous streamwise velocity fluctuation versus temperature fluctuation near the wall (1?|y|=0.04) for WT5.

  • Figure 12

    (Color online) Distribution of Prt for different dimensional wall temperature.

  • Table 1   Table 1 Flow and computational parameters for different dimensional wall temperature

    Cases

    Tw* (K)

    Ma

    Re

    Pr

    Tw

    WT1

    149.075

    3.0

    4880

    0.7

    1.0

    WT2

    298.15

    3.0

    4880

    0.7

    1.0

    WT3

    596.30

    3.0

    4880

    0.7

    1.0

    WT4

    1192.6

    3.0

    4880

    0.7

    1.0

    WT5

    1788.9

    3.0

    4880

    0.7

    1.0

  • Table 2   Table 2 Grid resolution and domain size for different dimensional wall temperature

    Cases

    Lx/H

    Ly/H

    Lz/H

    nx

    ny

    nz

    Δx+

    Δyw+

    Δymax+

    Δz+

    WT1

    2

    4π/3

    571

    261

    251

    10.12

    0.243

    8.97

    7.676

    WT2

    2

    4π/3

    571

    261

    251

    9.763

    0.230

    8.65

    7.403

    WT3

    2

    4π/3

    571

    261

    251

    9.419

    0.226

    8.35

    7.149

    WT4

    2

    4π/3

    571

    261

    251

    9.248

    0.222

    8.19

    7.014

    WT5

    2

    4π/3

    571

    261

    251

    9.061

    0.218

    8.03

    6.871

  • Table 3   Table 3 Time-averaged parameters for different dimensional wall temperature

    Cases

    Maτ

    Reτ

    --Bq

    ?ρw?

    ?ρc?

    ?Tc?

    ?μc?

    ?γw?

    ?γc?

    WT1

    0.115

    460.52

    0.1455

    2.444

    0.948

    2.550

    2.154

    1.400

    1.396

    WT2

    0.118

    443.59

    0.1344

    2.317

    0.952

    2.380

    1.829

    1.399

    1.366

    WT3

    0.123

    428.25

    0.1282

    2.142

    0.955

    2.136

    1.598

    1.378

    1.323

    WT4

    0.127

    420.24

    0.1193

    2.039

    0.957

    2.069

    1.503

    1.325

    1.296

    WT5

    0.128

    411.74

    0.0952

    1.984

    0.959

    2.029

    1.437

    1.305

    1.291

  • Table 4   Table 4 Skin friction and heat transfer for different dimensional wall temperature

    Cases

    Cf (×10?3)

    Ch (×10?3)

    2Ch /Cf

    Qwrms/Qw

    τwrms/τw

    WT1

    7.128

    4.401

    1.234

    0.401

    0.389

    WT2

    7.156

    4.294

    1.200

    0.407

    0.385

    WT3

    7.197

    4.247

    1.180

    0.401

    0.391

    WT4

    7.281

    4.208

    1.156

    0.409

    0.399

    WT5

    7.208

    4.199

    1.165

    0.410

    0.402

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1