Direct numerical simulations of temporally evolving supersonic turbulent channel flows of thermally perfect gas are conducted at Mach number 3.0 and Reynolds number 4800 for various values of the dimensional wall temperature to study the influence of the latter on the velocity-temperature correlations. The results show that in a fully developed turbulent channel flow, as the dimensional wall temperature increases, there is little change in the mean velocity, but the mean temperature decreases. The mean temperature is found to be a quadratic function of the mean velocity, the curvature of which increases with increasing dimensional wall temperature. The concept of “recovery enthalpy” provides a connection between the mean velocity and the mean temperature, and is independent of dimensional wall temperature. The right tails of probability density function of the streamwise velocity fluctuation grows with increasing dimensional wall temperature. The dimensional wall temperature does not have a significant influence on the Reynolds analogy factor or strong Reynolds analogy (SRA). The modifications of SRA by Huang et al.
the National Natural Science Foundation of China(Grant,Nos.,11502236,51536008,91852203)
the National Key Research and Development Program of China(Grant,No.,2016YFA0401200)
Science Challenge Project(Grant,No.,TZ2016001)
and the Natural Science Foundation of Zhejiang Province(Grant,No.,LQ16E090005)
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11502236, 51536008, and 91852203), the National Key Research and Development Program of China (Grant No. 2016YFA0401200), Science Challenge Project (Grant No. TZ2016001), and the Natural Science Foundation of Zhejiang Province (Grant No. LQ16E090005).
[1] Fulachier L., Anselmet F., Borghi R., Paranthoen P.. 1989, 203: 577 CrossRef ADS Google Scholar
[2] Brun C., Petrovan Boiarciuc M., Haberkorn M., Comte P.. 2008, 22: 189 CrossRef ADS Google Scholar
[3] Bradshaw P.. 1977, 9: 33 CrossRef ADS Google Scholar
[4] Lele S. K.. 1994, 26: 211 CrossRef ADS Google Scholar
[5]
H. Schlichting,
[6] Spina E. F., Smits A. J., Robinson S. K.. 1994, 26: 287 CrossRef ADS Google Scholar
[7]
A. Busemann,
[8]
L. Crocco, L’Aerotecnica
[9]
M. V. Morkovin,
[10]
A. J. Smits, and J. P. Dussauge,
[11] Reynolds O.. 1961, 3: 163 CrossRef Google Scholar
[12] van Driest E. R.. 2003, 40: 1012 CrossRef ADS Google Scholar
[13]
A. Walz,
[14] Whitfield D. L., High M. D.. 1977, 15: 431 CrossRef ADS Google Scholar
[15] Laderman A. J., Demetriades A.. 1974, 63: 121 CrossRef ADS Google Scholar
[16] Laderman A. J.. 1978, 16: 723 CrossRef ADS Google Scholar
[17] Owen F. K., Horstman C. C., Kussoy M. I.. 1975, 70: 393 CrossRef ADS Google Scholar
[18] Tummers M. J., van Veen E. H., George N., Rodink R., Hanjali? K.. 2004, 37: 364 CrossRef ADS Google Scholar
[19] Pietri L., Amielh M., Anselmet F.. 2000, 21: 22 CrossRef Google Scholar
[20] Wang Y. Q., Liu C. Q.. 2017, 60: 114712 CrossRef ADS Google Scholar
[21]
T. B. Gatski, and J. P. Bonnet,
[22] Pirozzoli S., Grasso F., Gatski T. B.. 2004, 16: 530 CrossRef ADS Google Scholar
[23] Maeder T., Adams N. A., Kleiser L.. 2001, 429: 187 CrossRef ADS Google Scholar
[24] Duan L., Beekman I., Martín M. P.. 2010, 655: 419 CrossRef ADS Google Scholar
[25] Duan L., Beekman I., Martín M. P.. 2011, 672: 245 CrossRef ADS Google Scholar
[26] Zhang Y. S., Bi W. T., Hussain F., She Z. S.. 2014, 739: 392 CrossRef ADS Google Scholar
[27] Duan L., Martín M. P.. 2011, 684: 25 CrossRef ADS Google Scholar
[28] Guarini S. E., Moser R. D., Shariff K., Wray A.. 2000, 414: 1 CrossRef ADS Google Scholar
[29] Gaviglio J.. 1987, 30: 911 CrossRef Google Scholar
[30] Huang P. G., Coleman G. N., Bradshaw P.. 1995, 305: 185 CrossRef ADS Google Scholar
[31] Lechner R., Sesterhenn J., Friedrich R.. 2001, 2: N1 CrossRef ADS Google Scholar
[32]
T. Cebeci, and A. M. O. Smith,
[33]
M. W. Rubesin,
[34] Liang X., Li X. L.. 2013, 56: 1408 CrossRef ADS Google Scholar
[35] Coleman G. N., Kim J., Moser R. D.. 1995, 305: 159 CrossRef ADS Google Scholar
[36] Tamano S., Morinishi Y.. 2006, 548: 361 CrossRef ADS Google Scholar
[37] Morinishi Y., Tamano S., Nakabayashi K.. 2004, 502: 273 CrossRef ADS Google Scholar
[38]
J. D. Anderson,
[39] O. Marxen, T. Magin, G. Iaccarino, and E. S. G. Shaqfeh, Hypersonic boundary-layer instability with chemical reactions, AIAA Paper 2010-0707, 2010. Google Scholar
[40] Jia W., Cao W.. 2010, 31: 979 CrossRef Google Scholar
[41] Chen X. P., Li X. P., Dou H.-S., Zhu Z. C.. 2011, 41: 969 CrossRef ADS Google Scholar
[42] Chen X., Li X., Dou H. S., Zhu Z.. 2018, 19: 365 CrossRef Google Scholar
[43] Chen Z., Yu C. P., Li L., Li X. L.. 2016, 59: 664702 CrossRef ADS Google Scholar
[44] Hu Y. C., Bi W. T., Li S. Y., She Z. S.. 2017, 60: 124711 CrossRef ADS Google Scholar
[45] Li X. L., Fu D. X., Ma Y. W., Liang X.. 2010, 53: 1651 CrossRef ADS Google Scholar
[46] Li X., Fu D., Ma Y.. 2008, 46: 2899 CrossRef ADS Google Scholar
[47] Li X., Fu D., Ma Y.. 2010, 22: 025105 CrossRef ADS Google Scholar
[48] Jiang G. S., Shu C. W.. 1996, 126: 202 CrossRef ADS Google Scholar
[49]
J. Fan, Chin. J. Theor. Appl. Mech.
[50]
S. B. Pope,
[51] Wang J., Gotoh T., Watanabe T.. 2017, 2: 053401 CrossRef ADS Google Scholar
[52] Roy C. J., Blottner F. G.. 2006, 42: 469 CrossRef ADS Google Scholar
[53] Modesti D., Pirozzoli S.. 2016, 59: 33 CrossRef Google Scholar
Figure 1
(Color online) Distribution of vibrational energy excited degree for different dimensional wall temperature.
Figure 2
(Color online) Distributions of mean velocity (a) and mean temperature (b) for different dimensional wall temperature.
Figure 3
(Color online) Distribution of van Driest transformed velocity.
Figure 4
(Color online) Distributions of RMS velocity (a) and RMS temperature fluctuations (b) for different dimensional wall temperature.
Figure 5
(Color online) Distributions of turbulent Mach number (a) and RMS Mach number fluctuation (b) for different dimensional wall temperature.
Figure 6
(Color online) PDFs of streamwise velocity fluctuation (a) and temperature fluctuation (b) near the wall (1?|
Figure 7
(Color online) PDFs of streamwise velocity fluctuation with the associated sign of temperature fluctuation (a) and temperature fluctuation with the associated sign of streamwise velocity fluctuation (b) near the wall (
Figure 8
(Color online) Relationship between mean temperature and mean streamwise velocity for WT5 (a) and different dimensional wall temperature (b).
Figure 9
(Color online) Distribution of “Recovery enthalpy”
Figure 10
(Color online) Distributions of SRA (a), ESRA (b), GSRA (c), RSRA (d), HSRA (e) and GHSRA (f) for different dimensional wall temperature.
Figure 11
(Color online) (a) Distribution of
Figure 12
(Color online) Distribution of
Cases | |||||
WT1 | 149.075 | 3.0 | 4880 | 0.7 | 1.0 |
WT2 | 298.15 | 3.0 | 4880 | 0.7 | 1.0 |
WT3 | 596.30 | 3.0 | 4880 | 0.7 | 1.0 |
WT4 | 1192.6 | 3.0 | 4880 | 0.7 | 1.0 |
WT5 | 1788.9 | 3.0 | 4880 | 0.7 | 1.0 |
Cases | Δ | Δ | ||||||||
WT1 | 4π | 2 | 4π/3 | 571 | 261 | 251 | 10.12 | 0.243 | 8.97 | 7.676 |
WT2 | 4π | 2 | 4π/3 | 571 | 261 | 251 | 9.763 | 0.230 | 8.65 | 7.403 |
WT3 | 4π | 2 | 4π/3 | 571 | 261 | 251 | 9.419 | 0.226 | 8.35 | 7.149 |
WT4 | 4π | 2 | 4π/3 | 571 | 261 | 251 | 9.248 | 0.222 | 8.19 | 7.014 |
WT5 | 4π | 2 | 4π/3 | 571 | 261 | 251 | 9.061 | 0.218 | 8.03 | 6.871 |
Cases | |||||||||
WT1 | 0.115 | 460.52 | 0.1455 | 2.444 | 0.948 | 2.550 | 2.154 | 1.400 | 1.396 |
WT2 | 0.118 | 443.59 | 0.1344 | 2.317 | 0.952 | 2.380 | 1.829 | 1.399 | 1.366 |
WT3 | 0.123 | 428.25 | 0.1282 | 2.142 | 0.955 | 2.136 | 1.598 | 1.378 | 1.323 |
WT4 | 0.127 | 420.24 | 0.1193 | 2.039 | 0.957 | 2.069 | 1.503 | 1.325 | 1.296 |
WT5 | 0.128 | 411.74 | 0.0952 | 1.984 | 0.959 | 2.029 | 1.437 | 1.305 | 1.291 |
Cases | 2 | ||||
WT1 | 7.128 | 4.401 | 1.234 | 0.401 | 0.389 |
WT2 | 7.156 | 4.294 | 1.200 | 0.407 | 0.385 |
WT3 | 7.197 | 4.247 | 1.180 | 0.401 | 0.391 |
WT4 | 7.281 | 4.208 | 1.156 | 0.409 | 0.399 |
WT5 | 7.208 | 4.199 | 1.165 | 0.410 | 0.402 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1