Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 4: 040301(2015) https://doi.org/10.1360/SSPMA2014-00289

Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise

More info
  • ReceivedJul 28, 2014
  • AcceptedSep 10, 2014
  • PublishedJan 30, 2015
PACS numbers

Abstract

本文分别提出两个抵抗集体退相位噪声和集体旋转噪声的鲁棒量子对话(Quantum Dialogue, QD)协议. 在每个提出的QD协议中, 每个由4物理量子比特构成的4个逻辑Bell态被用于对抗集体噪声. 信息泄露问题通过从一个通信方向另一个通信方直接两步传送辅助逻辑Bell态来克服. Bell态测量而非4量子比特联合测量被用于解码. 抵抗窃听者主动攻击(如截获-重发攻击、测量-重发攻击、纠缠-测量攻击和木马攻击)的有效性能够得到保证.


Funded by

国家自然科学基金资助项目(61402407)


References

[1] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302 CrossRef Google Scholar

[2] Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902 CrossRef Google Scholar

[3] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317 CrossRef Google Scholar

[4] Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319 CrossRef Google Scholar

[5] Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305 CrossRef Google Scholar

[6] Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15-20 CrossRef Google Scholar

[7] Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149-2153 CrossRef Google Scholar

[8] Chen X B, Wen Q Y, Guo F Z, et al. Controlled quantum secure direct communication with W state. Int J Quant Inform, 2008, 6: 899-906 CrossRef Google Scholar

[9] Cao W F, Yang Y G, Wen Q Y. Quantum secure direct communication with cluster states. Sci China-Phys Mech Astron, 2010, 53: 1271-1275 CrossRef Google Scholar

[10] Gao G, Fang M, Yang R M. Quantum secure direct communication by swapping entanglements of 3x3-dimensional Bell states. Int J Theor Phys, 2011, 50: 882-887 CrossRef Google Scholar

[11] Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946-1952 CrossRef Google Scholar

[12] Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 30-37 CrossRef Google Scholar

[13] Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357-368 CrossRef Google Scholar

[14] Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75-78 CrossRef Google Scholar

[15] Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18-21 CrossRef Google Scholar

[16] Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354-1359 Google Scholar

[17] Xiu X M, Dong H K, Dong L, et al. Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt Commun, 2009, 282: 2457-2459 CrossRef Google Scholar

[18] Qin S J, Wen Q Y, Lin S, et al. Cryptanalysis and improvement of a DSQC using four-particle entangled state and entanglement swapping. Opt Commun, 2009, 282: 4017-4019 CrossRef Google Scholar

[19] Xiu X M, Dong L, Gao Y J, et al. Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt Commun, 2009, 282: 333-337 CrossRef Google Scholar

[20] Qin S J, Wen Q Y, Meng L M, et al. Comment on “Controlled DSQC using five-qubit entangled states and two-step security test”. Opt Commun, 2009, 282: 2656-2658 CrossRef Google Scholar

[21] Xiu X M, Dong L, Gao Y J, et al. A revised controlled deterministic secure quantum communication with five-photon entangled state. Opt Commun, 2010, 283: 344-347 CrossRef Google Scholar

[22] Wang C, Liu J W, Liu X, et al. A novel deterministic secure quantum communication scheme with Einstein-Podolsky-Rosen pairs and single photons. Commun Theor Phys, 2013, 60: 397-404 CrossRef Google Scholar

[23] Yuan H, Zhang Q, Hong L, et al. Scheme for deterministic secure quantum communication with three-qubit GHZ state. Int J Theor Phys, 2014, 53: 2558-2564 CrossRef Google Scholar

[24] Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6-10 CrossRef Google Scholar

[25] 25 Zhang Z J, Man Z X. Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block. arXiv: quant-ph/0403215v1. Google Scholar

[26] 26 Zhang Z J, Man Z X. Secure bidirectional quantum communication protocol without quantum channel. arXiv: quant-ph/0403217v4. Google Scholar

[27] Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22-24 CrossRef Google Scholar

[28] Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67-70 CrossRef Google Scholar

[29] Man Z X, Xia Y J. Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett, 2006, 23: 1680-1682 CrossRef Google Scholar

[30] Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys, 2006, 15: 1418-1420 CrossRef Google Scholar

[31] Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-At Mol Opt Phys, 2006, 39: 3855-3863 CrossRef Google Scholar

[32] Man Z X, Xia Y J. Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin Phys Lett, 2007, 24: 15-18 CrossRef Google Scholar

[33] Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24: 19-22 CrossRef Google Scholar

[34] Yang Y G, Wen Q Y. Quasi-secure quantum dialogue using single photons. Sci China Ser G-Phys Mech Astron, 2007, 50: 558-562 CrossRef Google Scholar

[35] Shan C J, Liu J B, Cheng W W, et al. Bidirectional quantum secure direct communication in driven cavity QED. Mod Phys Lett B, 2009, 23: 3225-3234 CrossRef Google Scholar

[36] Ye T Y, Jiang L Z. Improvement of controlled bidirectional quantum secure direct communication by using a GHZ state. Chin Phys Lett, 2013, 30: 040305 CrossRef Google Scholar

[37] Gao F, Qin S J, Wen Q Y, et al. Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys Lett A, 2008, 372: 3333-3336 CrossRef Google Scholar

[38] Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51: 559-566 CrossRef Google Scholar

[39] Tan Y G, Cai Q Y. Classical correlation in quantum dialogue. Int J Quant Inform, 2008, 6: 325-329 CrossRef Google Scholar

[40] Shi G F. Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt Commun, 2010, 283: 5275-5278 CrossRef Google Scholar

[41] Gao G. Two quantum dialogue protocols without information leakage. Opt Commun, 2010, 283: 2288-2293 CrossRef Google Scholar

[42] Shi G F, Xi X Q, Tian X L, et al. Bidirectional quantum secure communication based on a shared private Bell state. Opt Commun, 2009, 282: 2460-2463 CrossRef Google Scholar

[43] Shi G F, Xi X Q, Hu M L, et al. Quantum secure dialogue by using single photons. Opt Commun, 2010, 283: 1984-1986 CrossRef Google Scholar

[44] Ye T Y. Large payload bidirectional quantum secure direct communication without information leakage. Int J Quant Inform, 2013, 11: 1350051 CrossRef Google Scholar

[45] Ye T Y, Jiang L Z. Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys Scr, 2014, 89: 015103 CrossRef Google Scholar

[46] Ye T Y. Quantum secure dialogue with quantum encryption. Commun Theor Phys, 2014, 62: 338-342 CrossRef Google Scholar

[47] Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China-Phys Mech Astron, 2014, 57: 1238-1243 CrossRef Google Scholar

[48] Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321 CrossRef Google Scholar

[49] Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int J Quant Inform, 2009, 7: 1479-1489 CrossRef Google Scholar

[50] Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54: 942-947 CrossRef Google Scholar

[51] Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901 CrossRef Google Scholar

[52] Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901 CrossRef Google Scholar

[53] Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Phys A, 2006, 361: 233-238 CrossRef Google Scholar

[54] Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1913-1918 CrossRef Google Scholar

[55] Gu B, Mu L L, Ding L G, et al. Fault tolerant three-party quantum secret sharing against collective noise. Opt Commun, 2010, 283: 3099-3103 CrossRef Google Scholar

[56] Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China- Phys Mech Astron, 2011, 54: 496-501 CrossRef Google Scholar

[57] Yang C W, Hwang T. Quantum dialogue protocols immune to collective noise. Quantum Inf Process, 2013, 12: 2131-2142 CrossRef Google Scholar

[58] Ye T Y. Information leakage resistant quantum dialogue against collective noise. Sci China-Phys Mech Astron, 2014, 57(12): 2266-2275 CrossRef Google Scholar

[59] Shannon C E. Communication theory of secrecy system. Bell Syst Tech J, 1949, 28: 656-715 CrossRef Google Scholar

[60] Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049-1052 CrossRef Google Scholar

[61] Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23: 2896-2899 CrossRef Google Scholar

[62] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23-25 CrossRef Google Scholar

[63] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145-195 CrossRef Google Scholar

[64] Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett, 2000, 85: 5635-5638 CrossRef Google Scholar

  • 表1   集体退相位噪声下4个逻辑Bell态之间的映射关系

    | Φd p+ ?

    | Φd p? ?

    | Ψd p+ ?

    | Ψd p? ?

    ΩI

    |Φdp +?

    |Φdp ??

    |Ψdp +?

    |Ψdp ??

    Ωz

    |Φdp ??

    |Φdp +?

    |Ψdp ??

    |Ψdp +?

    Ωx

    |Ψdp +?

    |Ψdp ??

    |Φdp +?

    |Φdp ??

    Ωy

    |Ψdp ??

    |Ψdp +?

    |Φdp ??

    |Φdp +?

  • 表2   集体旋转噪声下4个逻辑Bell态之间的映射关系

    | Φr+ ?

    | Φr? ?

    | Ψr+ ?

    | Ψr? ?

    ΘI

    |Φr+ ?

    |Φr? ?

    |Ψr+ ?

    |Ψr? ?

    Θz

    |Φr? ?

    |Φr+ ?

    |Ψr? ?

    |Ψr+ ?

    Θx

    |Ψr+ ?

    |Ψr? ?

    |Φr+ ?

    |Φr? ?

    Θy

    |Ψr? ?

    |Ψr+ ?

    |Φr? ?

    |Φr+ ?

  • 表3   与之前的抗集体噪声的无信息泄露协议的对比

    文献[57]

    协议

    文献[58]

    协议

    本文提出的QD协议

    初始量子资源

    2个Bell态的乘积态

    逻辑量子比特

    逻辑Bell态

    量子测量

    Bell态测量

    单粒子测量

    Bell态测量

    信息论效率

    40%

    33.3%

    40%

    量子信道容量

    每轮2比特

    每轮2比特

    每轮4比特

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1