具有双向认证功能的多方量子密钥分发

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 4: 040302(2015) https://doi.org/10.1360/SSPMA2014-00476

具有双向认证功能的多方量子密钥分发

More info
  • ReceivedDec 11, 2014
  • AcceptedJan 23, 2015
  • PublishedFeb 13, 2015
PACS numbers

Abstract

基于Greenberger-Horne-Zeilinger态的纠缠特性, 设计一个具有双向认证功能的多方量子密钥分发协议. 在协议中, 量子网络中的任意两个用户均可在一个半可信第三方的帮助下, 共享一个安全的会话密钥. 其中, 利用带密钥的单向hash函数技术对每个用户的身份进行认证. 最后, 对协议的安全性进行分析, 表明该协议在理论上是安全的.


Funded by

国家自然科学基金(61202451)

福建省教育厅A类重点项目(JA12062)


References

[1] Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: The Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore: IEEE Press. 1984, : 175-179 Google Scholar

[2] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145-195 CrossRef Google Scholar

[3] 李 宏伟, 陈 巍, 黄 靖正, et al. 量子密码安全性研究. 中国科学: 物理学 力学 天文学, 2012, 42: 1237-1255 Google Scholar

[4] 龙 桂鲁, 王 川, 李 岩松, et al. 量子安全直接通信. 中国科学: 物理学 力学 天文学, 2011, 41: 332-342 Google Scholar

[5] 吴 华, 赵 于康, 赵 勇, et al. 实用化光纤量子加密电话网络和高速数据传输系统—现场应用与安全管理. 中国科学: 信息科学, 2014, 44: 312-321 Google Scholar

[6] Phoenix S J D, Barnett S M, Townsend P D, et al. Multi-user quantum cryptography on optical networks. J Mod Opt, 1995, 42: 1155-1163 CrossRef Google Scholar

[7] Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23: 2896-2899 CrossRef Google Scholar

[8] Xue P, Li C F, Guo G C. Conditional efficient multiuser quantum cryptography network. Phys Rev A, 2002, 65: 022317 CrossRef Google Scholar

[9] Deng F G, Liu X S, Ma Y J, et al. A theoretical scheme for multi-user quantum key distribution with N Einstein-Podolsky-Rosen pairs on a passive optical network. Chin Phys Lett, 2002, 19: 893-896 CrossRef Google Scholar

[10] Hong C H, Heo J O, Khym G L, et al. Quantum channels are sufficient for multi-user quantum key distribution protocol between users. Opt Commun, 2010, 283: 2644-2646 CrossRef Google Scholar

[11] Guo Y, Shi R, Zeng G. Secure networking quantum key distribution schemes with Greenberger-Horne-Zeilinger states. Phys Scripta, 2010, 81: 045006 CrossRef Google Scholar

[12] Wang W Y, Wang C, Wen K, et al. Quantum key distribution network based on differential phase shift. Chin Phys Lett, 2007, 24: 1463-1466 CrossRef Google Scholar

[13] Stucki D, Walenta N, Vannel F, et al. High rate, long-distance quantum key distribution over 250 km of ultra low loss fibers. New J Phys, 2009, 11: 075003 CrossRef Google Scholar

[14] Sandor I. Quantum communications: Explained for communication engineers. IEEE Commun Mag, 2013, 51: 28-25 Google Scholar

[15] Du?ek M, Hade?ka O, Hendrych M, et al. Quantum identification system. Phys Rev A, 1999, 60: 149-156 CrossRef Google Scholar

[16] Zeng G, Zhang W. Identity verification in quantum key distribution. Phys Rev A, 2000, 61: 022303 CrossRef Google Scholar

[17] Mihara T. Quantum identification schemes with entanglements. Phys Rev A, 2002, 65: 052326 CrossRef Google Scholar

[18] Lee H, Lim J, Yang H J. Quantum direct communication with authentication. Phys Rev A, 2006, 73: 042305 CrossRef Google Scholar

[19] Zhang Z, Zeng G, Zhou N, et al. Quantum identity authentication based on ping-pong technique for photons. Phys Lett A, 2006, 356: 199-205 CrossRef Google Scholar

[20] Cederlof J, Larsson J A. Security aspects of the authentication used in quantum cryptography. IEEE Trans Inform Theor, 2008, 54: 1735-1741 CrossRef Google Scholar

[21] Wang M J, Pan W. Quantum secure direct communication based on authentication. Chin Phys Lett, 2008, 25: 3860-3863 CrossRef Google Scholar

[22] Yen C A, Horng S J, Goan H S, et al. Quantum direct communication with mutual authentication. Quantum Inform Comput, 2009, 9: 376-394 Google Scholar

[23] Fung C H F, Ma X F, Chau H F. Practical issues in quantum-key-distribution postprocessing. Phys Rev A, 2010, 81: 012318 CrossRef Google Scholar

[24] Yang J, Wang C, Zhang R. Quantum secure direct communication with authentication expansion using single photons. Commun Theor Phys, 2010, 54: 829-834 CrossRef Google Scholar

[25] Zhou N R, Wang L J, Ding J, et al. Quantum deterministic key distribution protocols based on the authenticated entanglement channel. Phys Scripta, 2010, 81: 045009 CrossRef Google Scholar

[26] Huang P, Zhu J, Lu Y, et al. Quantum identity authentication using gaussing-modulated squeezed states. Int J Quantum Inform, 2011, 9: 701-721 CrossRef Google Scholar

[27] Yang Y G, Tian J, Xia J, et al. Quantum authenticated direct communication using Bell states. Int J Theor Phys, 2013, 52: 336-344 CrossRef Google Scholar

[28] Yuan H, Liu Y M, Pan G Z, et al. Quantum identity authentication based on ping-pong technique without entanglements. Quantum Inf Process, 2014, 13: 2535-2549 CrossRef Google Scholar

[29] Franklin M K, Reiter M K. Fair exchange with a semi-trusted third party. In: The Proceedings of the 4th ACM conference on Computer and communications security. New York: Association for Computing Machinery. 1997, : 1-5 Google Scholar

[30] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302 CrossRef Google Scholar

[31] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317 CrossRef Google Scholar

[32] Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2: 251-272 Google Scholar

[33] 周 宗权, 李 传锋. 固态量子存储. 科学通报, 2013, 58: 287-293 Google Scholar

[34] 林 青. 普适单体偏振高维量子态幺正操作的光学实现. 中国科学: 物理学 力学 天文学, 2014, 44: 317-325 Google Scholar

[35] 叶 欣露, 林 青. 非对称偏振三维纠缠态的预警制备. 中国科学: 物理学 力学 天文学, 2013, 43: 626-633 Google Scholar

[36] 王 国伟, 徐 应强, 牛 智川. 新型低维结构锑化物红外探测器的研究与挑战. 中国科学: 物理学 力学 天文学, 2014, 44: 368-389 Google Scholar

[37] Wang X Y, Yu H B. How to break MD5 and other hash functions. In: Cramer R, ed. Advances in Cryptology—EUROCRYPT 2005. Berlin Heidelberg: Springer-Verlag. 2005, : 19-35 Google Scholar

[38] Wang X Y, Yin Y L, Yu H B. Finding Collisions in the Full SHA-1. In: Shoup V, ed. Advances in Cryptology—CRYPTO 2005. Berlin Heidelberg: Springer-Verlag. 2005, : 17-36 Google Scholar

[39] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. In: The Proceedings of the 35th Annual Symposium of Foundation of Computer Science. New York: Institute of Electrical and Electronics Engineers. 1994, : 124-134 Google Scholar

[40] Grover L K. A fast quantum mechanical algorithm for database search. In: The Proceedings of the 28th Annual ACM Symposium on Theory of Computing. New York: Association for Computing Machinery. 1996, : 212-219 Google Scholar

[41] Hao L, Long G L. Experimental implementation of a fixed-point duality quantum search algorithm in the nuclear magnetic resonance quantum system. Sci China-Phys Mech Astron, 2011, 54: 936-941 CrossRef Google Scholar

[42] Gao F, Qin S J, Wen Q Y, et al. A simple participant attack on the Bradler-Dusek protocol. Quantum Inform Comput, 2007, 7: 329-334 Google Scholar

[43] Lin S, Gao F, Guo F Z, et al. Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys Rev A, 2007, 76: 036301 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1