Progresses in the study of the nature of dark matter and detections

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 4: 41001(2015) https://doi.org/10.1360/SSPMA2014-0495

Progresses in the study of the nature of dark matter and detections

ZHOU YuFeng1,2,3,1,*
More info
  • AcceptedJan 5, 2015
  • PublishedMar 13, 2015

Abstract

Astrophysical observations have indicated that dark matter contributes to 85% of the energy budeget of the Universe, but its nature is still largely unknown. Understanding the nature of dark matter requires new physics beyond the current standard models of particle physics. This article briefly reviews the evidence, origins of relic aboundance and candidates of dark matter, with the focus on the indirect and direct detection of dark matter particles. The recent experimental progresses are briefly discussed. Some mechanisims and models such as the Sommerfeld enhancements, effective operator approach and the isospin violating dark matter are discussed.


References

[1] Zwicky F. Die Rotverschiebung von extragalaktischen Nebeln. Helv Phys Acta, 1933, 6: 110-127

[2] Zwicky F. On the masses of Nebulae and of clusters of Nebulae. Astrophys J, 1937, 86: 217-246

[3] Smith S. The mass of the Virgo Cluster. Astrophys J, 1936, 83: 23-30

[4] Oort J H. Some problems concerning the structure and dynamics of the galactic system and the elliptical nebulae NGC 3115 and 4494. Astrophys J, 1940, 91: 273-306

[5] Rubin V C, Ford J, Kent W, et al. Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys J, 1970, 159:379-403

[6] Ade P A R, Aghanim N, Armitage-Caplan C, et al. Planck 2013 results. XVI. Cosmological parameters. Astron Astrophys, 2014, 571: A16

[7] Chatrchyan S, Khachatryan V, Sirunyan A M, et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B, 2012, 716: 30-61

[8] Aad G, Abajyan T, Abbott B, et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett B, 2012, 716: 1-29

[9] Gondolo P, Gelmini G. Cosmic abundances of stable particles: Improved analysis. Nucl Phys B, 1991, 360: 145-179

[10] Peccei R, Quinn H R. CP conservation in the presence of instantons. Phys Rev Lett, 1977, 38: 1440-1443

[11] Wilczek F. Problem of strong p and t invariance in the presence of instantons. Phys Rev Lett, 1978, 40: 279-282

[12] Weinberg S. A new light Boson? Phys Rev Lett, 1978, 40: 223-226

[13] Abbott L, Sikivie P. A cosmological bound on the invisible axion. Phys Lett B, 1983, 120: 133-136

[14] Dine M, Fischler W. The not so harmless Axion. Phys Lett B, 1983, 120: 137-141

[15] Asztalos S J, Rosenberg L J, van Bibber K, et al. Searches for astrophysical and cosmological axions. Ann Rev Nucl Part Sci, 2006, 56: 293-326

[16] Strong A, Moskalenko I. Propagation of cosmic-ray nucleons in the galaxy. Astrophys J, 1998, 509: 212-228

[17] Berezinskii V, Grigor'eva S, Dogiel V, et al. Predicted spectrum and anisotropy of the ultra-high energy cosmic rays in a single-source model. Astron Astrophys, 1990, 232: 582-588

[18] Seo E, Ptuskin V. Stochastic reacceleration of cosmic-rays in the interstellar-medium. Astrophys J, 1994, 431: 705-714

[19] Strong A W, Moskalenko I V, Reimer O, et al. Diffuse continuum gamma rays from the Galaxy. Astrophys J, 2000, 537: 763-784

[20] Strong A W, Mattox J. Gradient model analysis of egret diffuse galactic gamma-ray emission. Astron Astrophys, 1996, 308: L21-L24

[21] Moskalenko I, Strong A. Production and propagation of cosmic ray positrons and electrons. Astrophys J, 1998, 493: 694-707

[22] Gleeson L, Axford W. Solar modulation of galactic cosmic rays. Astrophys J, 1968, 154: 1011-1026

[23] Duldig M. Australian cosmic ray modulation research. Pub Astron Soc Australia, 2001, 18: 12-40

[24] Adriani O, Barbarino G C, Bazilevskaya G A, et al. An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. Nature, 2009,458: 607-609

[25] Adriani O, Barbarino G, Bazilevskaya G, et al. A statistical procedure for the identification of positrons in the PAMELA experiment. Astropart Phys, 2010, 34: 1-11

[26] Strong A, Moskalenko I. Models for galactic cosmic ray propagation. Adv Space Res, 2001, 27: 717-726

[27] Ptuskin V, Moskalenko I V, Jones F, et al. Dissipation of magnetohydrodynamic waves on energetic particles: Impact on interstellar turbulence and cosmic ray transport. Astrophys J, 2006, 642: 902-916

[28] Aguilar M, Alberti G, Alpat B, et al. First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV. Phys Rev Lett, 2013, 110: 141102

[29] Ackermann M, Ajello M, Allafort A, et al. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Phys Rev Lett, 2012, 108: 011103

[30] Ackermann M, Ajello M, Atwood W B, et al. Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys Rev D, 2010, 82:092004

[31] Adriani O, Barbarino G C, Bazilevskaya G A, et al. The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. Phys Rev Lett, 2011, 106: 201101

[32] Adriani O, Barbarino G, Bazilevskaya G, et al. A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. Phys Rev Lett, 2009, 102: 051101

[33] Adriani O, Barbarino G, Bazilevskaya G, et al. PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. Phys Rev Lett, 2010, 105: 121101

[34] Chang J, Adams J, Ahn H, et al. An excess of cosmic ray electrons at energies of 300-800 GeV. Nature, 2008, 456: 362-365

[35] Torii S, Yamagami T, Tamura T, et al. High-energy electron observations by PPB-BETS flight in Antarctica. arXiv:0809.0760

[36] Abdo A A, Ackermann M, Ajello M, et al. Measurement of the cosmic ray e+ plus e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. Phys Rev Lett, 2009, 102: 181101

[37] Abdo A A, Ackermann M, Ajello M, et al. Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope. Phys Rev D, 2010,82: 092003

[38] Aharonian F, Akhperjanian A G, Barres de Almeida U, et al. The energy spectrum of cosmic-ray electrons at TeV energies. Phys Rev Lett, 2008,101: 261104

[39] Aharonian F, Akhperjanian A G, Anton G, et al. Probing the ATIC peak in the cosmic-ray electron spectrum with HESS. Astron Astrophys, 2009,508: 561-564

[40] Trotta R, Johannesson G, Moskalenko I, et al. Constraints on cosmic-ray propagation models from a global Bayesian analysis. Astrophys J, 2011,729: 106

[41] Jin H B,Wu Y L, Zhou Y F, et al. Implications of the first AMS-02 measurement for dark matter annihilation and decay. J Cosmol Astropart Phys,2013, 11: 026

[42] Liu Z P, Wu Y L, Zhou Y F, et al. Sommerfeld enhancements with vector, scalar and pseudoscalar force-carriers. Phys Rev D, 2013, 88: 096008

[43] Jungman G, Kamionkowski M, Griest K, et al. Supersymmetric dark matter. Phys Rept, 1996, 267: 195-373

[44] Bertone G, Hooper D, Silk J, et al. Particle dark matter: Evidence, candidates and constraints. Phys Rept, 2005, 405: 279-390

[45] Ellis J R, Ferstl A, Olive K A. Reevaluation of the elastic scattering of supersymmetric dark matter. Phys Lett B, 2000, 481: 304-314

[46] Cheng T P. Chiral symmetry and the Higgs-Boson nucleon coupling. Phys Rev D, 1988, 38: 2869-2874

[47] Cohen T, Phalen D J, Pierce A, et al. On the correlation between the spin-independent and spin-dependent direct detection of dark matter. Phys Rev D, 2010, 81: 116001

[48] Ahmed Z, Akerib D S, Arrenberg S, et al. Dark matter search results from the CDMS II experiment. Science, 2010, 327: 1619-1621

[49] Agnese R, Ahmed Z, Anderson A J, et al. Dark matter search results using the silicon detectors of CDMS II. arXiv:1304.4279

[50] Ahmed Z, Akerib D S, Arrenberg S, et al. Results from a low-energy analysis of the CDMS II germanium data. Phys Rev Lett, 2011, 106: 131302

[51] Angle J, Aprile E, Arneodo F, et al. Search for light dark matter in XENON10 data. Phys Rev Lett, 2011, 107: 051301

[52] Aprile E, Aprile E, Arisaka K, et al. Dark matter results from 225 live days of XENON100 data. Phys Rev Lett, 2012, 109: 181301

[53] Aalseth C E, Barbeau P S, Colaresi J, et al. CoGeNT: A search for low-mass dark matter using p-type point contact germanium detectors. Phys Rev D, 2013, 88: 012002

[54] Savage C, Gelmini G, Gondolo P, et al. Compatibility of DAMA/LIBRA dark matter detection with other searches. J Cosmol Astropart Phys,2009, 04: 010

[55] Brown A, Henry S, Kraus H, et al. Extending the CRESST-II commissioning run limits to lower masses. Phys Rev D, 2012, 85: 021301

[56] Bernabei R, Belli P, Cappella F, et al. New results from DAMA/LIBRA. Eur Phys J C, 2010, 67: 39-49

[57] Lee H S, Bhang H C, Choi J H, et al. Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors. Phys Rev Lett, 2007, 99: 091301

[58] Aalseth C E, Barbeau P S, Bowden N S, et al. Results from a search for light-mass dark matter with a P-type point contact germanium detector. Phys Rev Lett, 2011, 106: 131301

[59] Aalseth C, Barbeau P, Colaresi J, et al. Search for an annual modulation in a P-type point contact germanium dark matter detector. Phys Rev Lett,2011, 107: 141301

[60] Aalseth C E, Barbeau P S, Colaresi J, et al. Search for an annual modulation in three years of CoGeNT dark matter detector data. arXiv:1401.3295

[61] Yue Q, Zhao W, Kang K J, et al. Limits on light WIMPs from the CDEX-1 experiment with a p-type point-contact germanium detector at the China Jingping Underground Laboratory. Phys Rev D, 2014, 90: 091701

[62] Agnese R, Ahmed Z, Anderson A J, et al. Silicon detector dark matter results from the final exposure of CDMS II. Phys Rev Lett, 2013, 111:251301

[63] Akerib D S, Ara ú jo H M, Bai X, et al. First results from the LUX dark matter experiment at the Sanford underground research facility. Phys Rev Lett, 2014, 112: 091303

[64] PandaX Collaboration Collaboration, Xiao M, Xiao Z, Zhao L, et al. First dark matter search results from the PandaX-I experiment. Sci China Phys Mech Astron, 2014, 57: 2024-2030

[65] Tucker-Smith D, Weiner N. The Status of inelastic dark matter. Phys Rev D, 2005, 72: 063509

[66] Chang S, Kribs G D, Tucker-Smith D, et al. Inelastic dark matter in light of DAMA/LIBRA. Phys Rev D, 2009, 79: 043513

[67] XENON100 Collaboration, et al. Implications on inelastic dark matter from 100 Live Days of XENON100 Data. Phys Rev D, 2011, 84: 061101

[68] Feng J L, Kumar J, Marfatia D, et al. Isospin-violating dark matter. Phys Lett B, 2011, 703: 124-127

[69] Jin H B, Miao S, Zhou Y F, et al. Implications of the latest XENON100 and cosmic ray antiproton data for isospin violating dark matter. Phys Rev D, 2013, 87: 016012

[70] CMS Collaboration Collaboration, Lowette S. Search for dark matter at CMS. arXiv:1410.3762

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1