Recent progress of silicon photonics

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 1: 014201(2015) https://doi.org/10.1360/SSPMA2014-00300

Recent progress of silicon photonics

More info
  • ReceivedAug 8, 2014
  • AcceptedOct 29, 2014
  • PublishedJan 4, 2015
PACS numbers

Abstract

随着人们对信息容量、速度以及成本的迫切要求, 低成本、高度集成的硅基光电子学蓬勃发展, 成为光通信、高速计算机等领域的研究热点和非常有前景的关键技术. 硅基光电子学是一种可以用硅基集成电路上的投资、设施、经验以及技术来设计、制造、封装光器件和光电集成电路, 在集成度、可制造性和扩展性方面达到集成电路的水平, 从而在成本、功耗、尺寸上取得突破的一种技术. 最近几年, 硅基光电子集成技术已经发展到了一个崭新的阶段, 各个关键的硅基光电子器件都已经达到商用化的标准, 部分性能甚至超过目前的商用器件, 引起了产业界的广泛关注. 本文从硅基光电子学的几个关键器件入手, 包括波导、光栅、偏振分束器、混频器、滤波器、调制器、探测器和激光器, 详细介绍了该方向的研究进展, 特别是最近5年的重大突破; 随后介绍了硅基光电子学在光互连、光通信、光传感、太阳能电池等几方面的重大应用; 最后提出硅基光电子学未来发展方向和目前面临的主要挑战.


Funded by

国家高技术研究发展计划(2011AA010302)

国家自然科学基金及教育部新世纪优秀人才计划资助项目(61036011)


References

[1] Krishnamoorthy A V, Ho R, Zheng X Z, et al. Computer systems based on silicon photonic interconnects. IEEE, 2009, 97(7): 1337-1361 CrossRef Google Scholar

[2] Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12: 1678-1687 CrossRef Google Scholar

[3] Kimerling L C, Ahn D, Apsel A B, et al. Electronic-photonic integrated circuits on the CMOS platform. SPIE, 2006, 6125: 612502 Google Scholar

[4] Arakawa Y, Nakamura T, Nakamura T, et al. Silicon photonics for next generation system integration platform. IEEE Commun Mag, 2013, 51: 72-77 Google Scholar

[5] Charbonnier B, Menezo S, O’Brien P, et al. Silicon Photonics for next generation FDM/FDMA PON. J Opt Commun Networking, 2012, 4: A29-A37 CrossRef Google Scholar

[6] Soref R, Lorenzo J P. Single-crystal silicon: a new material for 1. 3 and 1. 6 μm integrated-optical components. Electron Lett, 1985, 21: 953-954 CrossRef Google Scholar

[7] Soref R, Bennett B R. Electrooptical effects in silicon. IEEE J Quantum Elect, 1987, 23: 123-129 CrossRef Google Scholar

[8] Liu A, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427: 615-618 CrossRef Google Scholar

[9] Rong H, Jones R, Liu A, et al. A continuous-wave Raman silicon laser. Nature, 2005, 433: 725-728 CrossRef Google Scholar

[10] Koch B R, Fang A W, Chang H H, et al. A 40 GHz mode locked silicon evanescent laser. In: 4th International Conference on Group IV Photonics. Tokyo, 2007. 1–3. Google Scholar

[11] Liao L, Liu A, Rubin D, et al. 40 Gbit/s silicon optical modulator for high-speed applications. Electron Lett, 2007, 43: 1196-1197 CrossRef Google Scholar

[12] Narasimha A, Analui B, Liang Y, et al. A fully integrated 4×10 Gb/s DWDM optoelectronic transceiver in a standard 0. 13 mm CMOS SOI process. IEEE J Solid-St Circ, 2007, 42: 2736-2744 CrossRef Google Scholar

[13] Doerr C R, Buhl L L, Baeyens Y, et al. Packaged monolithic silicon 112 Gb/s coherent receiver. IEEE Photon Tech Lett, 2011, 23: 762-764 CrossRef Google Scholar

[14] Dong P, Xie C J, Chen L, et al. 112 Gb/s monolithic PDM-QPSK modulator in silicon. Opt Express, 2012, 20: B624-B629 CrossRef Google Scholar

[15] Assafa S, Shank S, Green W, et al. A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications. In: Proceedings of Electron Devices Meeting (IEDM) San Francisco. 2012, : 33 Google Scholar

[16] Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 2013, 21: 4116-4125 CrossRef Google Scholar

[17] Xue C, Xue H, Cheng B, et al. Ge-on-SOI PIN photodetector array for parallel optical interconnects. J Lightwave Technol, 2009, 27: 5687-5689 CrossRef Google Scholar

[18] Yi H, Long Q, Tan W, et al. Demonstration of low power penalty of silicon Mach–Zehnder modulator in long-haul transmission. Opt Express, 2012, 20: 27562-27568 CrossRef Google Scholar

[19] Li T, Zhang J, Yi H, et al. Low-voltage, high speed, compact silicon modulator for BPSK modulation. Opt Express, 2013, 21: 23410-23415 CrossRef Google Scholar

[20] Pavesi L. Silicon-based light sources for silicon integrated circuits. Adv Opt Technol, 2008, 2: 416926 Google Scholar

[21] Chanham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett, 1990, 57: 1046 CrossRef Google Scholar

[22] Chok S, Park N M, Kim T Y, et al. High efficiency visible elecroluminescence from silicon nanocyrstals embedded in siliocn nitride using a transparent doping layer. Appl Phys Lett, 2005, 76: 071909 Google Scholar

[23] Toshikiyo K, Fujii M, Mayashi S, et al. Enhanced optical properties of Si nanocrystal in planar microcavity. Phys E, 2003, 17: 451-452 CrossRef Google Scholar

[24] Kik P G, Polman A. Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2. J Appl Phys, 2002, 91: 534-536 CrossRef Google Scholar

[25] Lee J, Shin J H, Park N. Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs. J Lightwave Technol, 23: 19–25. Google Scholar

[26] Toccafondo V, Pasquale F D, Faralli S, et al. Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs. Opt Express, 2007, 15: 14907-14913 CrossRef Google Scholar

[27] Isshiki H, Dood M J A de, Kimura T. Self-assembled infrared-luminescent Er-Si-O crystallites on silicon. Appl Phys Lett, 2004, 85: 4343-4345 CrossRef Google Scholar

[28] Savio R L, Miritello M, Piro A M, et al. The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films. Appl Phys Lett, 2008, 93: 021919 CrossRef Google Scholar

[29] Wang X J, Kimura T, Zhou Z. Enhanced Er3+ luminescence of Er Silicate by Y and Yb co-doping. In: Proceedings of the 6th International Conference on Group IV Photonics, San Francisco, 2009, WD7: 69–71. Google Scholar

[30] Zheng J, Zuo Y, Zhang L Z, et al. Role of Bi3+ ions for Er3+ ions efficient 1. 54 μm light emission in Er/Bi codoped SiO2 thin film prepared by sol-gel method. J Lumine, 2010, 130: 1760-1763 CrossRef Google Scholar

[31] Wang X J, Nakajima T, Kimura T. Fabrication and characterization of Er silicates on SiO2/Si substrates. Appl Phys Lett, 2009, 95: 041906 CrossRef Google Scholar

[32] Wang X J, Wang B, Wang L, et al. Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates. Appl Phys Lett, 2011, 98: 071903 CrossRef Google Scholar

[33] Han H S, Seo S Y, Shin J H, et al. Coeffient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier. Appl Phys Lett, 2002, 81: 3720-3722 CrossRef Google Scholar

[34] Kanjilal A, Rebohle L, Skorupa W, et al. Correlation between the microstructure and electroluminescence properties of Er-doped metal-oxide semiconductor structures. Appl Phys Lett, 2009, 94: 101916 CrossRef Google Scholar

[35] Jambois O, Berencen Y, Hijazi K, et al. Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions. J Appl Phys, 2009, 106: 063526 CrossRef Google Scholar

[36] Jambois O, Gourbilleau F, Kenyon A J, et al. Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters. Opt Express, 2010, 18: 2230-2235 CrossRef Google Scholar

[37] Suh K, Shin J H, Seo S J, et al. Er3+ Luminescence and cooperative upconversion in ErxY2-xSiO5 nanocrystal aggregates fabricated using si nanowires. Appl Phys Lett, 2008, 92: 121910 CrossRef Google Scholar

[38] Suh K, Lee M, Soo C J, et al. Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides. Opt Express, 2010, 18: 7724-7729 CrossRef Google Scholar

[39] Wang X J, Yuan G, Isshiki H, et al. Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide. J Appl Phys, 2010, 108: 013506 CrossRef Google Scholar

[40] Guo R M, Wang X J, Zang K, et al. Optical amplification in Er/Yb silicate strip loaded waveguide. Appl Phys Lett, 2011, 99: 161115 CrossRef Google Scholar

[41] Yin Y, Sun K, Xu W J, et al. 1. 53 μm photo and electroluminescence from Er3+ in erbium silicate. J Phys-Condensed Matter, 2009, 21: 012204 CrossRef Google Scholar

[42] Yin Y, Xu W J, Wei F, et al. Room Temperature Er3+ 1. 54 μm electroluminescence from Si-rich erbium silicate deposited by magnetron sputtering. J Phys D-Appl Phys, 2010, 43: 335102 CrossRef Google Scholar

[43] Wang B, Guo R M, Wang X J, et al. Near-infrared electroluminescence in ErYb silicate based light-emitting device. Opt Mater, 2012, 34: 1371-1374 CrossRef Google Scholar

[44] Wang L, Guo R M, Wang B, et al. Hybrid Si3N 4-Er/Yb silicate waveguides for amplifier application. IEEE Photon Technol Lett, 2012, 24: 900-902 CrossRef Google Scholar

[45] Shin J H, Lee M. Reducing optical losses and energy-transfer upconversion in ErxY2- xSiO5 waveguides. IEEE Photon Technol Lett, 2013, 25: 1801-1804 CrossRef Google Scholar

[46] Yin L, Ning H, Turkdogan S, et al. Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material. Appl Phys Lett, 2012, 100: 241905 CrossRef Google Scholar

[47] Boyraz O, Jalali B. Demonstration of a silicon Raman laser. Opt Express, 2004, 12: 5269-5273 CrossRef Google Scholar

[48] Boyraz O, Jalali B. Demonstration of directly modulated silicon Raman laser. Opt Express, 2005, 13: 796-800 CrossRef Google Scholar

[49] Rong H, Xu S, Kuo Y H, et al. Low-threshold continuouswave Raman silicon laser. Nat Photon, 2007, 1: 232-237 CrossRef Google Scholar

[50] Jalali B, Raghunathan V, Shori R, et al. Prospects for silicon mid-IR Raman lasers. IEEE J Sel Top Quantum Electron, 2006, 12: 1618-1626 CrossRef Google Scholar

[51] Liu X, Osgood R M, Vlasov Y A, et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat Photon, 2010, 4: 557-560 CrossRef Google Scholar

[52] Zlatanovic S, Park J S, Moro S, et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat Photon, 2010, 4: 561-564 CrossRef Google Scholar

[53] Jalali B. Silicon photonics: nonlinear optics in the midinfrared. Nat Photon, 2010, 4: 506-508 Google Scholar

[54] Liu J, Sun X, Pan D, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 2007, 15: 11272-11277 CrossRef Google Scholar

[55] Ishikawa Y, Wada K, Cannon D D, et al. Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl Phys Lett, 2003, 82: 2044-2046 CrossRef Google Scholar

[56] Liu J, Cannon D D, Wada K, et al. Silicidation-induced band gap shrinkage in Ge epitaxial films on Si. Appl Phys Lett, 2004, 84: 660-662 CrossRef Google Scholar

[57] Cheng S L, Shambat G, Lu J, et al. Characterizations of direct band gap photoluminescence and electroluminescence from epi-Ge on Si. ECS Trans, 2010, 33: 545-554 Google Scholar

[58] Sun X, Liu J, Kimerling L C, et al. Toward a germanium laser for integrated silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16: 124-131 CrossRef Google Scholar

[59] Sun X, Liu J, Kimerling L C, et al. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl Phys Lett, 2009, 95: 011911 CrossRef Google Scholar

[60] Liu J, Sun X, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35: 679-681 CrossRef Google Scholar

[61] Rodolfo E, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20: 11316-11320 CrossRef Google Scholar

[62] Liang D, Bowers J E, Oakley D C, et al. High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits. Electrochem Solid-State Lett, 2009, 12: H101-H104 CrossRef Google Scholar

[63] Liang D, Bowers J E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 2008, 26: 1560-1568 CrossRef Google Scholar

[64] Roelkens G, Thourhout D Van, Baets R, et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. Opt Express, 2006, 14: 8154-8159 CrossRef Google Scholar

[65] Campenhout J Van, Liu L, Romeo P Rojo, et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon Technol Lett, 2008, 20: 1345-1347 CrossRef Google Scholar

[66] Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4: 751–779. Google Scholar

[67] Ohira K, Kobayashi K, Iizuka N, et al. On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide. Opt Express, 2010, 18: 15440-15447 CrossRef Google Scholar

[68] Groenert M E, Leitz C W, Pitera A J, et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers. J Appl Phys, 2003, 93: 362-367 CrossRef Google Scholar

[69] Mi Z, Bhattacharya P, Yang J, et al. Roomtemperature self-organised in 0.5Ga0.5As quantum dot laser on silicon. Electron Lett, 2005, 41: 742-744 CrossRef Google Scholar

[70] Chen R, Tran T T D, Ng K W, et al. Nanolasers grown on Silicon. Nat Photonics, 2011, 5: 170-175 CrossRef Google Scholar

[71] Gao F, Wang Y, Cao G, et al. Reduction of sidewall roughness in silicon-on-insulator rib waveguides. Appl Surf Sci, 2006, 252: 5071-5075 CrossRef Google Scholar

[72] Deri R J, Kapon E. Low-loss III-V semiconductor optical waveguides. IEEE J Quantum Electron, 1991, 27: 626-640 CrossRef Google Scholar

[73] Yap K P, Delage A, Lapointe J, et al. Correlation of scattering Loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides. J Lightwave Technol, 2009, 27: 3999-4008 CrossRef Google Scholar

[74] Takahashi J I, Tsuchizawa T, Watanabe T, et al. Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides. J Vac Sci Technol B, 2004, 22: 2522-2525 CrossRef Google Scholar

[75] Gao F, Wang Y, Cao G, et al. Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides. Appl Phys B-Lasers Opt, 2005, 81: 691-694 CrossRef Google Scholar

[76] Lee M C M, Wu M C. Thermal annealing in Hydrogen for 3-D profile transformation on silicon-oninsulator and sidewall roughness reduction. J Microelectromech S, 2006, 15: 338-343 CrossRef Google Scholar

[77] Borselli M, Johnson T J, Michael C P, et al. Surface encapsulation for low-loss silicon photonics. Appl Phys Lett, 2007, 91: 131117 CrossRef Google Scholar

[78] Gao F, Wang Y, Cao G, et al. Reduction of sidewall roughness in silicon-on-insulator rib waveguides. Appl Surf Sci, 2006, 252: 5071-5075 CrossRef Google Scholar

[79] Xia Q, Murphy P F, Gao H, et al. Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction. Nanotechnology, 2009, 20: 345302 CrossRef Google Scholar

[80] Huang Y, Luo X, J Song, et al. Low loss (<0.2 dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics. In: Optical Fiber Communication Conference, San Francisco, 2014, Th1A-1. Google Scholar

[81] Taillaert D, W Bogaerts, Bienstman P, et al. An out-ofplane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J Quantum Electron, 2002, 38: 949-955 CrossRef Google Scholar

[82] Taillaert D, Laere F Van, Ayre M, et al. Grating couplers forcoupling between optical fibers and nanophotonic waveguides. Jpn J Appl Phys, 2006, 45: 6071-6077 CrossRef Google Scholar

[83] Chen X, Li C, Tsang H K. Two dimensional silicon waveguide chirped grating couplers for vertical optical fibers. Opt Commun, 2010, 283: 2146-2149 CrossRef Google Scholar

[84] Alonso-Ramos C, Ortega-Mo?ux A, Molina-Fernández I, et al. Efficient fiber to-chip grating coupler formicrometric SOI rib waveguides. Opt Express, 2010, 18: 15189-15200 CrossRef Google Scholar

[85] Gunn G. CMOS Photonics for high-speed interconnects. IEEE Micro, 2006, 26: 58-66 Google Scholar

[86] Yang J, Zhou Z, Jia H, et al. A compact double-layer subwavelength binary blazed grating 1×4 splitter based on silicon-on-insulator. Opt Lett, 2011, 36(14): 2614-2617 CrossRef Google Scholar

[87] Feng J, Zhou Z. Polarization beam splitter using a binary blazed grating coupler. Opt Lett, 2007, 32: 1662-1665 CrossRef Google Scholar

[88] Zaoui W S, Kunze A, Vogel W, et al. Bridging the gap between optical fibers and silicon photonic integrated circuits. Opt Express, 2014, 22: 1277-1286 CrossRef Google Scholar

[89] Trinh P D, Yegnanarayanan S, Coppinger F, et al. Silicon-on-insulator (SOI) phased-array wavelengthmulti/demultiplexer with extremely low-polarization sensitivity. IEEE Photon Technol Lett, 1997, 9: 940-942 CrossRef Google Scholar

[90] Suzuki S, Sumida S, Inoue Y, et al. Polarisation-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion adjusted to Si substrate. Electron Lett, 1997, 33: 1173-1174 CrossRef Google Scholar

[91] Xiang L, Yu Y, Gao D, et al. Silicon based integrated comb filter and demultiplexer for simultaneous WDM signal processing. IEEE J Sel Top Quant, 2014, 20: 8200208 Google Scholar

[92] Vahala K J. Optical microcavities. Nature, 2003, 424: 839-846 CrossRef Google Scholar

[93] Daldosso N, Pavesi L. Nanosilicon photonics. Laser Photon Rev, 2009, 3: 508-534 CrossRef Google Scholar

[94] Peter H D, Jeroen D C, Peter V, et al. Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings. J Lightwave Technol, 2013, 31: 3085-3092 CrossRef Google Scholar

[95] Ong J R, Kumar R, Mookherjea S. Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters. IEEE Photon Technol Lett, 2013, 25: 1543-1546 Google Scholar

[96] Li Q, Eftekhar A A, Alipour P, et al. Low-loss microdisk-based delay lines for narrowband optical filters. IEEE Photon Technol Lett, 2012, 24: 1276-1278 CrossRef Google Scholar

[97] Dong P, Feng N N, Feng D, et al. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt Express, 2010, 18: 23784-23789 CrossRef Google Scholar

[98] Popovi? M A, Barwicz T, Watts M R, et al. Multistage high-order microring-resonator add-drop filters. Opt Lett, 2006, 31: 2571-2573 CrossRef Google Scholar

[99] Xiao S, Khan M H, Shen H, et al. Silicon-oninsulator microring add-drop filters with free spectral ranges over 30 nm. J Lightwave Technol, 2008, 26: 228-236 CrossRef Google Scholar

[100] Kokubun Y. Vertically coupled microring resonator filter for integrated add/drop node. IEICE Trans Electron, 2005, E88-C: 349–361. Google Scholar

[101] Yamada K, Shoji T, Tsuchizawa T, et al. Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges. Opt Lett, 2003, 28: 1663-1664 CrossRef Google Scholar

[102] Tsuchizawa T, Yamada K, Fukuda H, et al. Microphotonics devices based on silicon microfabrication technology. IEEE J Sel Top Quant, 2005, 11: 232-240 CrossRef Google Scholar

[103] Poon A W, Li C, Ning M A, et al. Photonics filters, switches and subsystems for next-generation optical networks. HKIE Trans, 2004, 11: 60-67 Google Scholar

[104] Lee M C M, Wu M C. MEMS-actuatedmicrodisk resonators with variable power coupling ratios. IEEE Photon Technol Lett, 2005, 17: 1034-1036 CrossRef Google Scholar

[105] Yao J, Wu M C. Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators. Opt Lett, 2009, 34: 2557-2559 CrossRef Google Scholar

[106] Knapczyk M T, Peralta L G de, Bernussi A A, et al. Reconfigurable add-drop optical filter based on arrays of digital micromirrors. J Lightwave Technol, 2008, 26: 237-242 CrossRef Google Scholar

[107] Tang Y, Dai D, He S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photon Technol Lett, 2009, 21: 242-244 CrossRef Google Scholar

[108] Ye W, Xu D, Janz S, et al. Passive broadband silicon-on-insulator polarization splitter. Opt Lett, 2007, 32: 1492-1494 CrossRef Google Scholar

[109] Saidani N, Belhadj W, AbdelMalek F, et al. Detailed investigation of self-imaging in multimode photonic crystal waveguides for applications in power and polarization beam splitters. Opt Commun, 2012, 285: 3487-3492 CrossRef Google Scholar

[110] Dai D, Wang Z, Peters J, et al. Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides. IEEE Photon Technol Lett, 2012, 24: 673-675 CrossRef Google Scholar

[111] Fukuda H, Yamada K, Tsuchizawa T, et al. ltrasmall polarization splitter based on silicon wire waveguides. Opt Express, 2006, 14: 12401-12408 CrossRef Google Scholar

[112] Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light-Sci Appl, 2012, 1: 1-12 CrossRef Google Scholar

[113] Hosseini A, Rahimi S, Xu X, et al. Ultracompact and fabrication-tolerant integrated polarization splitter. Opt Lett, 2011, 36: 4047-4049 CrossRef Google Scholar

[114] Huang Y, Zhao T, Yi H, et al. High extinction ratio polarization beam splitter with multimode interference coupler on SOI. Opt Commun, 2013, 307: 46–49. Google Scholar

[115] Yin M, Huang Y, Yi H, et al. A compact polarization beam splitter based on silicon-on-insulator Asia communications and photonics conference. In: Proceedings of Asia Communications and Photonics Beijing. 2013, : AF2B-9 Google Scholar

[116] Doerr C R, Gill D M, Gnauck A H, et al. Monolithic demodulator for 40 Gb/s DQPSK using a star coupler. J Lightwave Technol, 2006, 24: 171-174 CrossRef Google Scholar

[117] Doerr C R, Zhang L, Chandrasekhar S, et al. Monolithic DQPSK receiver in InP with low polarization sensitivity. IEEE Photon Technol Lett, 2007, 19: 1765-1767 CrossRef Google Scholar

[118] Dragone C. Efficient N×N star coupler base on Fourier optics. Electron Lett, 1988, 24: 942-944 CrossRef Google Scholar

[119] Doerr C R, Zhang L, Winzer P J. Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating. J Lightwave Technol, 2011, 29: 536-541 CrossRef Google Scholar

[120] Zimmermann L, Voigt K, Winzer G, et al. C-band optical 90-hybrids based on silicon-on-insulator 4×4 waveguide couplers. IEEE Photon Technol Lett, 2009, 21: 143-145 CrossRef Google Scholar

[121] Halir R, Roelkens G, Ortega-Mo?ux A, et al. High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler. Opt Lett, 2011, 36: 178-180 CrossRef Google Scholar

[122] Kunkel R, Bach H-G, Hoffmann D, et al. First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100 GE coherent frontends. In: Proceedings of IEEE Conference on Indium Phosphide and Related Materials, Newport Beach, 2009, TuB2. 2: 167–170. Google Scholar

[123] Sakamaki Y, Nasu Y, Hashimoto T, et al. Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range. IEICE Electronics Express, 2010, 7: 216-221 CrossRef Google Scholar

[124] Jeong S-H, Morito K. Novel optical 90 hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI coupler. J Lightwave Technol, 2010, 28: 1323-1331 CrossRef Google Scholar

[125] Jeong S-H, Morito K. Compact optical 90° hybrid employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler. Opt Express, 2010, 18: 4275-4288 CrossRef Google Scholar

[126] Yang W, Yin M, Li Y, et al. Ultra-compact optical 90° hybrid based on a wedge-shaped 2×4 MMI coupler and a 2×2 MMI coupler in silicon-on-insulator. Opt Express, 2013, 21: 28423-28431 CrossRef Google Scholar

[127] Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4: 518-526 CrossRef Google Scholar

[128] Reed G T, Jason Png C E. Silicon optical modulators. Mater Tod, 2005, 8: 40-50 Google Scholar

[129] Della Corte F G, Merenda M, Cocorullo G, et al. Modulation speed improvement in a Fabry-Perot thermo-optical modulator through a driving signal optimization technique. Opt Eng, 2009, 48: 074601 CrossRef Google Scholar

[130] Seo S Y, Lee J, Shin J H, et al. The thermooptic effect of Si nanocrystals in silicon-rich silicon oxide thin films. Appl Phys Lett, 2004, 85: 2526-2528 CrossRef Google Scholar

[131] Dubovitsky S, Steier W H, Yegnanarayanan S, et al. Analysis and improvement of Mach–Zehnder modulator linearity performance for chirped and tunable optical carriers. J Lightwave Technol, 2002, 20: 858-863 Google Scholar

[132] Liao L, Samara-Rubio D, Morse M, et al. High speed siliconMach-Zehnder modulator. Opt Express, 2005, 13: 3129-3135 CrossRef Google Scholar

[133] Basak J, Liao L, Liu A, et al. Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms. Adv Opt Technol, 2008, 2008: 678948 Google Scholar

[134] Gardes F Y, Reed G T, Emerson N G, et al. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt Express, 2005, 13: 8845-8854 CrossRef Google Scholar

[135] You J B, Park M, Park J W, et al. 12. 5 Gbps optical modulation of silicon racetrack resonator based on carrierdepletion in asymmetric p-n diode. Opt Express, 2008, 16: 18340-18344 CrossRef Google Scholar

[136] Park J W, You J B, Kim I G, et al. Highmodulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN diode. Opt Express, 2009, 17: 15520-15524 CrossRef Google Scholar

[137] Liu A, Liao L, Rubin D, et al. Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide. Semicond Sci Technol, 2008, 23: 064001 CrossRef Google Scholar

[138] Thomson D J, Gardes F Y, Fedeli J M, et al. 50 Gb/s silicon optical modulator. IEEE Photon Technol Lett, 2012, 24: 234–236. Google Scholar

[139] Baba T, Akiyama S, Imai M, et al. 50 Gb/s ring-resonator-based silicon modulator. Opt Express, 2013, 21: 11869-11876 CrossRef Google Scholar

[140] Xiao X, Xu H, Li X, et al. 60 Gbit/s silicon modulators with enhanced electro-optical efficiency. In: Optical Fiber Communication Conference, Anaheim, 2013, OW4J3: 1–3. Google Scholar

[141] Biberman A, Timurdogan E, Zortman W A, et al. Adiabatic microring modulators. Opt Express, 2012, 20: 29223-29236 CrossRef Google Scholar

[142] Kuo Y H, Lee Y K, Ge Y, et al. Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators. IEEE J Sel Top Quant, 2006, 12: 1503-1512 CrossRef Google Scholar

[143] Chaisakul P, Marris-Morini D, Isella G, et al. Quantumconfined Stark effect measurements in Ge/SiGe quantumwell structures. Opt Lett, 2010, 35: 2913-2915 CrossRef Google Scholar

[144] Feng D, Liao S, Liang H, et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt Express, 2012, 20: 22224-22232 CrossRef Google Scholar

[145] Rong Y, Ge Y, Huo Y, et al. Quantum-confined stark effect in Ge/SiGe quantum wells on Si. IEEE J Sel Top Quant, 2010, 16: 85-92 CrossRef Google Scholar

[146] Janner D, Tulli D, García-Granda M, et al. Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photon Rev, 2009, 3: 301-313 CrossRef Google Scholar

[147] Clark J, Lanzani G. Organic photonics for communications. Nat Photonics, 2010, 4: 438-446 CrossRef Google Scholar

[148] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photonics, 2010, 4: 535-544 CrossRef Google Scholar

[149] Leuthold J, Freude W, Brosi J M, et al. Silicon organic hybrid technology-A platform for practical nonlinear optics. IEEE, 2009, 97: 1304-1316 CrossRef Google Scholar

[150] Alloatti L, Palmer R, Diebold S, et al. 100 GHz silicon-organic hybrid modulator. Light: Sci Appl, 2014, 3: e173-e173 CrossRef Google Scholar

[151] Lauermann M, Palmer R, Koeber S, et al. 16QAM silicon-organic hybrid (SOH) modulator operating with 0. 6 Vpp and 19 fJ/bit at 112 Gbit/s. In: CLEO. 2014, : SM2G-6 Google Scholar

[152] Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474: 64-67 CrossRef Google Scholar

[153] Midrio M, Galli P, Romagnoli M, et al. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon Res, 2014, 2: A34–A40. Google Scholar

[154] Du W, Hao R, Li E. The study of few-layer graphene based Mach-Zehnder modulator. Opt Commun, 2014, 323: 49–53. Google Scholar

[155] Casalino M. Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1. 55 μm fabrication and characterization. Appl Phys Lett, 2008, 92: 251104 CrossRef Google Scholar

[156] Casalino M, Sirleto L, Moretti L, et al. Design of a silicon RCE Schottky photodetector working at 1. 55 μm. J Lumin, 2006, 121: 399-402 CrossRef Google Scholar

[157] Zhu S, Yu M B, Lo G Q, et al. Nearinfrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications. Appl Phys Lett, 2008, 92: 081103 CrossRef Google Scholar

[158] Brueck S R J, Diadiuk V, Jones T, et al. Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves. Appl Phys Lett, 1985, 46: 915-917 CrossRef Google Scholar

[159] Torosian K M, Karakashian A S, Teng Y Y. Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes. Appl Opt, 1987, 2: 2650-2652 Google Scholar

[160] Akbari A, Tait R N, Berini P. Surface plasmon waveguide schottky detector. Opt Express, 2010, 18: 8505-8514 CrossRef Google Scholar

[161] Scales C, Breukelaar I, Berini P. Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon. Opt Lett, 2010, 35: 529-531 CrossRef Google Scholar

[162] Assefa S, Xia F, Bedell S W, et al. CMOS-integrated high-speed MSM germanium waveguide photodetector. Opt Express, 2010, 18: 4986-4999 CrossRef Google Scholar

[163] Sheng Z, Liu L, Brouckaert J, et al. InGaAs PIN photodetectors integrated on silicon-oninsulator waveguides. Opt Express, 2010, 18: 1756-1761 CrossRef Google Scholar

[164] Brouckaert J, Roelkens G, Thourhout D Van, et al. Thin-film III-V photodetectors integrated on silicon-oninsulator photonic ICs. J Lightwave Technol, 2007, 25: 1053-1060 CrossRef Google Scholar

[165] Sheng Z, Liu L, Brouckaert J, et al. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides. Opt Express, 2010, 18: 1756-1761 CrossRef Google Scholar

[166] Feng S, Geng Y, Lau K M, et al. Epitaxial III-V-on-silicon waveguide butt-coupled photodetectors. Opt Lett, 2012, 37: 4035-4037 CrossRef Google Scholar

[167] Stiff-Roberts A D. Quantum-dot infrared photodetectors: A review. J Nanophoton, 2009, 3: 031607 CrossRef Google Scholar

[168] Barve A V, Lee S J, Noh S K, et al. Review of current progress in quantum dot infrared photodetectors. Laser Photon Rev, 2010, 4: 738-750 CrossRef Google Scholar

[169] Schneider H, Liu H C, Winnerl S, et al. Room-temperature midinfrared two-photon photodetector. Phys Rev B, 2008, 93: 101114 Google Scholar

[170] Luan H C, Lim D R, Lee K K, et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl Phys Lett, 1999, 75: 2909-2911 CrossRef Google Scholar

[171] Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors. Nat Photon, 2010, 4: 527-534 CrossRef Google Scholar

[172] Yamaguchi M, Tachikawa M, Sugo M. Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates. Appl Phys Lett, 1990, 56: 27-29 CrossRef Google Scholar

[173] Vivien L, Osmond J, Fédéli J M, et al. 42 GHz p. i. n germanium photodetector integrated in a silicon-on-insulator waveguide. Opt Express, 2009, 17: 6252-6257 CrossRef Google Scholar

[174] Feng D, Liao S, Dong P, et al. High-speed Ge photodetectormonolithically integrated with large cross-section siliconon-insulator waveguide. Appl Phys Lett, 2009, 95: 261105 CrossRef Google Scholar

[175] Beals M, Michel J, Liu J F, et al. Process flow innovations for photonic device integration in CMOS. In: Proceedings of Silicon Photonics III San Jose. 2008, : 689804 Google Scholar

[176] Yin T, Cohen R, Morse M M, et al. 31GHz Ge n-ip waveguide photodetectors on Silicon-on-Insulator substrate. Opt Express, 2007, 15: 13965-13971 CrossRef Google Scholar

[177] Ahn D, Hong C Y, Liu J, et al. High performance, waveguide integrated Ge photodetectors. Opt Express, 2007, 15: 3916-3921 CrossRef Google Scholar

[178] Vivien L, Polzer A, M-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20: 1096-1101 CrossRef Google Scholar

[179] Ding L, Liow T Y, Lim E J, et al. Ge waveguide photodetectors with responsivity roll-off beyond 1620 nm using localized stressor. In: proceedings of the Optical Fiber Communication Conference Los Angeles. 2012, : OW3G-4 Google Scholar

[180] Takenaka M, Morii K, Sugiyama M, et al. Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping. Opt Express, 2012, 20: 8718-8725 CrossRef Google Scholar

[181] Novack A, Gould M, Yang Y, et al. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt Express, 2013, 21: 28387-28393 CrossRef Google Scholar

[182] Kang Y, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gainbandwidth product. Nat Photonics, 2009, 3: 59-63 CrossRef Google Scholar

[183] Zaoui W S, Chen H W, Bowers J E, et al. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product. Opt Express, 2009, 17: 12641-12649 CrossRef Google Scholar

[184] Kang Y, Saado Y, Morse M, et al. Ge/Si waveguide avalanche photodiodes on SOI substrates for high speed communication. ECS Trans, 2010, 33: 757-764 Google Scholar

[185] Duan N, Liow T Y, Lim A E, et al. High Speed Waveguide-Integrated Ge/Si Avalanche Photodetector. In: Proceedings of Optical Fiber Communication Conference Anaheim. 2013, : OM3K-3 Google Scholar

[186] Carroll M S, Childs K, Jarecki R, et al. Ge-Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection. Appl Phys Lett, 2008, 93: 183511 CrossRef Google Scholar

[187] Liu A, Liao L, Chetrit Y et al. Wavelength division multiplexing based photonic integrated circuits on siliconon-insulator platform. IEEE J Sel Top Quant, 2010, 16: 23-32 CrossRef Google Scholar

[188] Dong P, Xie C, Chen L, et al. 112 Gb/s monolithic PDM-QPSK modulator in silicon. Opt Express, 2012, 20: B624-B629 CrossRef Google Scholar

[189] Dong P, X Liu, Chandrasekhar S, et al. Monolithic Silicon Photonic Circuits Enable 112 Gb/s PDMQPSK Transmission over 2560 km SSMF. In: Proceedings of Optical Communication (ECOC 2013) 39th European Conference London. 2013, : 1-3 Google Scholar

[190] Dong P, Liu X, Sethumadhavan C, et al. 224 Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits. In: Proceedings of National Fiber Optic Engineers Conference Anaheim. 2013, : PDP5C-6 Google Scholar

[191] Miller D A B. Optical interconnects to electronic chips. Appl Opt, 2010, 49: F59-F70 CrossRef Google Scholar

[192] McGrath D. Intel is developing optical chip-to-chip interconnects. Electron Eng Times, 2009, 1556: 39 Google Scholar

[193] Freymann G, Ledermann A, Thiel M, et al. Threedimensional nanostructures for photonics. Adv Funct Mater, 2010, 20: 1038-1052 CrossRef Google Scholar

[194] Arakawa Y, Nakamura T. Urino Y, et al. Silicon photonics for next generation system integration platform. IEEE Commun Mag, 2013, 51: 72-77 Google Scholar

[195] Urino Y, Shimizu T, Okano M, et al. First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon waveguide resonators. In: Proceedings of European Conference and Exposition on Optical Communications Geneva Switzerland. 2011, : We-9 Google Scholar

[196] Densmore A, Vachon M, Xu D X, et al. Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. Opt Lett, 2009, 34: 3598-3600 CrossRef Google Scholar

[197] Claes T, Molera J G, Vos K De, et al. Label-free biosensing with a slot-waveguidebased ring resonator in silicon on insulator. IEEE Photon Lett, 2009, 1: 197-204 CrossRef Google Scholar

[198] Janz S, Densmore A, Xu D X, et al. Silicon-based microphotonics for biosensing applications. In: Optical Waveguide Sensing and Imaging. Netherlands: Springer. 2008, : 167-194 Google Scholar

[199] Robinson J T, Chen L, Lipson M. On-chip gas detection in silicon opticalmicrocavities. Opt Express, 2008, 16: 4296-4301 CrossRef Google Scholar

[200] Schmid J H, Sinclair W, García J, et al. Silicon-oninsulator guided mode resonant grating for evanescent field molecular sensing. Opt Express, 2009, 17: 18371-18380 CrossRef Google Scholar

[201] Torres-Costa V, Martin-Palma R J. Application of nanostructured porous silicon in the field of optics. J Mater Sci, 2010, 45: 2823-2838 CrossRef Google Scholar

[202] Schultz O, Glunz S W, Willeke G P. Multicrystalline silicon solar cells exceeding 20% efficiency. Prog Photovoltaics Res Appl, 2004, 12: 553–558. Google Scholar

[203] Sai H, Saito K, Hozuki N, et al. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Appl Phys Lett, 2013, 102: 053509 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1