References
[1]
Krishnamoorthy
A V,
Ho
R,
Zheng
X Z, et al.
Computer systems based on silicon photonic interconnects.
IEEE,
2009, 97(7): 1337-1361
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Computer systems based on silicon photonic interconnects&author=Krishnamoorthy A V&author=Ho R&author=Zheng X Z&publication_year=2009&journal=IEEE&volume=97&issue=7&pages=1337-1361
[2]
Soref
R.
The past, present, and future of silicon photonics.
IEEE J Sel Top Quantum Electron,
2006, 12: 1678-1687
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The past, present, and future of silicon photonics&author=Soref R&publication_year=2006&journal=IEEE J Sel Top Quantum Electron&volume=12&pages=1678-1687
[3]
Kimerling
L C,
Ahn
D,
Apsel
A B, et al.
Electronic-photonic integrated circuits on the CMOS platform.
SPIE,
2006, 6125: 612502
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electronic-photonic integrated circuits on the CMOS platform&author=Kimerling L C&author=Ahn D&author=Apsel A B&publication_year=2006&journal=SPIE&volume=6125&pages=612502
[4]
Arakawa
Y,
Nakamura
T,
Nakamura
T, et al.
Silicon photonics for next generation system integration platform.
IEEE Commun Mag,
2013, 51: 72-77
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonics for next generation system integration platform&author=Arakawa Y&author=Nakamura T&author=Nakamura T&publication_year=2013&journal=IEEE Commun Mag&volume=51&pages=72-77
[5]
Charbonnier
B,
Menezo
S,
O’Brien
P, et al.
Silicon Photonics for next generation FDM/FDMA PON.
J Opt Commun Networking,
2012, 4: A29-A37
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon Photonics for next generation FDM/FDMA PON&author=Charbonnier B&author=Menezo S&author=O’Brien P&publication_year=2012&journal=J Opt Commun Networking&volume=4&pages=A29-A37
[6]
Soref
R,
Lorenzo
J P.
Single-crystal silicon: a new material for 1. 3 and 1. 6 μm integrated-optical components.
Electron Lett,
1985, 21: 953-954
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Single-crystal silicon: a new material for 1. 3 and 1. 6 μm integrated-optical components&author=Soref R&author=Lorenzo J P&publication_year=1985&journal=Electron Lett&volume=21&pages=953-954
[7]
Soref
R,
Bennett
B R.
Electrooptical effects in silicon.
IEEE J Quantum Elect,
1987, 23: 123-129
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrooptical effects in silicon&author=Soref R&author=Bennett B R&publication_year=1987&journal=IEEE J Quantum Elect&volume=23&pages=123-129
[8]
Liu
A,
Jones
R,
Liao
L, et al.
A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.
Nature,
2004, 427: 615-618
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor&author=Liu A&author=Jones R&author=Liao L&publication_year=2004&journal=Nature&volume=427&pages=615-618
[9]
Rong
H,
Jones
R,
Liu
A, et al.
A continuous-wave Raman silicon laser.
Nature,
2005, 433: 725-728
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A continuous-wave Raman silicon laser&author=Rong H&author=Jones R&author=Liu A&publication_year=2005&journal=Nature&volume=433&pages=725-728
[10]
Koch B R, Fang A W, Chang H H, et al. A 40 GHz mode locked silicon evanescent laser. In: 4th International Conference on Group IV Photonics. Tokyo, 2007. 1–3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Koch B R, Fang A W, Chang H H, et al. A 40 GHz mode locked silicon evanescent laser. In: 4th International Conference on Group IV Photonics. Tokyo, 2007. 1–3&
[11]
Liao
L,
Liu
A,
Rubin
D, et al.
40 Gbit/s silicon optical modulator for high-speed applications.
Electron Lett,
2007, 43: 1196-1197
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=40 Gbit/s silicon optical modulator for high-speed applications&author=Liao L&author=Liu A&author=Rubin D&publication_year=2007&journal=Electron Lett&volume=43&pages=1196-1197
[12]
Narasimha
A,
Analui
B,
Liang
Y, et al.
A fully integrated 4×10 Gb/s DWDM optoelectronic transceiver in a standard 0. 13 mm CMOS SOI process.
IEEE J Solid-St Circ,
2007, 42: 2736-2744
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A fully integrated 4×10 Gb/s DWDM optoelectronic transceiver in a standard 0. 13 mm CMOS SOI process&author=Narasimha A&author=Analui B&author=Liang Y&publication_year=2007&journal=IEEE J Solid-St Circ&volume=42&pages=2736-2744
[13]
Doerr
C R,
Buhl
L L,
Baeyens
Y, et al.
Packaged monolithic silicon 112 Gb/s coherent receiver.
IEEE Photon Tech Lett,
2011, 23: 762-764
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Packaged monolithic silicon 112 Gb/s coherent receiver&author=Doerr C R&author=Buhl L L&author=Baeyens Y&publication_year=2011&journal=IEEE Photon Tech Lett&volume=23&pages=762-764
[14]
Dong
P,
Xie
C J,
Chen
L, et al.
112 Gb/s monolithic PDM-QPSK modulator in silicon.
Opt Express,
2012, 20: B624-B629
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=112 Gb/s monolithic PDM-QPSK modulator in silicon&author=Dong P&author=Xie C J&author=Chen L&publication_year=2012&journal=Opt Express&volume=20&pages=B624-B629
[15]
Assafa
S,
Shank
S,
Green
W, et al.
A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications.
In:
Proceedings of Electron Devices Meeting (IEDM) San Francisco.
2012, : 33
Google Scholar
http://scholar.google.com/scholar_lookup?title=A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications&author=Assafa S&author=Shank S&author=Green W&publication_year=2012&pages=33
[16]
Xiao
X,
Xu
H,
Li
X, et al.
High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization.
Opt Express,
2013, 21: 4116-4125
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization&author=Xiao X&author=Xu H&author=Li X&publication_year=2013&journal=Opt Express&volume=21&pages=4116-4125
[17]
Xue
C,
Xue
H,
Cheng
B, et al.
Ge-on-SOI PIN photodetector array for parallel optical interconnects.
J Lightwave Technol,
2009, 27: 5687-5689
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ge-on-SOI PIN photodetector array for parallel optical interconnects&author=Xue C&author=Xue H&author=Cheng B&publication_year=2009&journal=J Lightwave Technol&volume=27&pages=5687-5689
[18]
Yi
H,
Long
Q,
Tan
W, et al.
Demonstration of low power penalty of silicon Mach–Zehnder modulator in long-haul transmission.
Opt Express,
2012, 20: 27562-27568
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Demonstration of low power penalty of silicon Mach–Zehnder modulator in long-haul transmission&author=Yi H&author=Long Q&author=Tan W&publication_year=2012&journal=Opt Express&volume=20&pages=27562-27568
[19]
Li
T,
Zhang
J,
Yi
H, et al.
Low-voltage, high speed, compact silicon modulator for BPSK modulation.
Opt Express,
2013, 21: 23410-23415
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-voltage, high speed, compact silicon modulator for BPSK modulation&author=Li T&author=Zhang J&author=Yi H&publication_year=2013&journal=Opt Express&volume=21&pages=23410-23415
[20]
Pavesi
L.
Silicon-based light sources for silicon integrated circuits.
Adv Opt Technol,
2008, 2: 416926
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-based light sources for silicon integrated circuits&author=Pavesi L&publication_year=2008&journal=Adv Opt Technol&volume=2&pages=416926
[21]
Chanham
L T.
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.
Appl Phys Lett,
1990, 57: 1046
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers&author=Chanham L T&publication_year=1990&journal=Appl Phys Lett&volume=57&pages=1046
[22]
Chok
S,
Park
N M,
Kim
T Y, et al.
High efficiency visible elecroluminescence from silicon nanocyrstals embedded in siliocn nitride using a transparent doping layer.
Appl Phys Lett,
2005, 76: 071909
Google Scholar
http://scholar.google.com/scholar_lookup?title=High efficiency visible elecroluminescence from silicon nanocyrstals embedded in siliocn nitride using a transparent doping layer&author=Chok S&author=Park N M&author=Kim T Y&publication_year=2005&journal=Appl Phys Lett&volume=76&pages=071909
[23]
Toshikiyo
K,
Fujii
M,
Mayashi
S, et al.
Enhanced optical properties of Si nanocrystal in planar microcavity.
Phys E,
2003, 17: 451-452
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced optical properties of Si nanocrystal in planar microcavity&author=Toshikiyo K&author=Fujii M&author=Mayashi S&publication_year=2003&journal=Phys E&volume=17&pages=451-452
[24]
Kik
P G,
Polman
A.
Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2.
J Appl Phys,
2002, 91: 534-536
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2&author=Kik P G&author=Polman A&publication_year=2002&journal=J Appl Phys&volume=91&pages=534-536
[25]
Lee J, Shin J H, Park N. Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs. J Lightwave Technol, 23: 19–25.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lee J, Shin J H, Park N. Optical gain at 1.5 μm in nanocrystal Si-sensitized Er-doped silica waveguide using top-pumping 470 nm LEDs. J Lightwave Technol, 23: 19–25&
[26]
Toccafondo
V,
Pasquale
F D,
Faralli
S, et al.
Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs.
Opt Express,
2007, 15: 14907-14913
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs&author=Toccafondo V&author=Pasquale F D&author=Faralli S&publication_year=2007&journal=Opt Express&volume=15&pages=14907-14913
[27]
Isshiki
H,
Dood
M J A de,
Kimura
T.
Self-assembled infrared-luminescent Er-Si-O crystallites on silicon.
Appl Phys Lett,
2004, 85: 4343-4345
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-assembled infrared-luminescent Er-Si-O crystallites on silicon&author=Isshiki H&author=Dood M J A de&author=Kimura T&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=4343-4345
[28]
Savio
R L,
Miritello
M,
Piro
A M, et al.
The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films.
Appl Phys Lett,
2008, 93: 021919
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films&author=Savio R L&author=Miritello M&author=Piro A M&publication_year=2008&journal=Appl Phys Lett&volume=93&pages=021919
[29]
Wang X J, Kimura T, Zhou Z. Enhanced Er3+ luminescence of Er Silicate by Y and Yb co-doping. In: Proceedings of the 6th International Conference on Group IV Photonics, San Francisco, 2009, WD7: 69–71.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang X J, Kimura T, Zhou Z. Enhanced Er3+ luminescence of Er Silicate by Y and Yb co-doping. In: Proceedings of the 6th International Conference on Group IV Photonics, San Francisco, 2009, WD7: 69–71&
[30]
Zheng
J,
Zuo
Y,
Zhang
L Z, et al.
Role of Bi3+ ions for Er3+ ions efficient 1. 54 μm light emission in Er/Bi codoped SiO2 thin film prepared by sol-gel method.
J Lumine,
2010, 130: 1760-1763
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Role of Bi3+ ions for Er3+ ions efficient 1. 54 μm light emission in Er/Bi codoped SiO2 thin film prepared by sol-gel method&author=Zheng J&author=Zuo Y&author=Zhang L Z&publication_year=2010&journal=J Lumine&volume=130&pages=1760-1763
[31]
Wang
X J,
Nakajima
T,
Kimura
T.
Fabrication and characterization of Er silicates on SiO2/Si substrates.
Appl Phys Lett,
2009, 95: 041906
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication and characterization of Er silicates on SiO2/Si substrates&author=Wang X J&author=Nakajima T&author=Kimura T&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=041906
[32]
Wang
X J,
Wang
B,
Wang
L, et al.
Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates.
Appl Phys Lett,
2011, 98: 071903
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extraordinary infrared photoluminescence efficiency of Er0.1Yb1.9SiO5 films on SiO2/Si substrates&author=Wang X J&author=Wang B&author=Wang L&publication_year=2011&journal=Appl Phys Lett&volume=98&pages=071903
[33]
Han
H S,
Seo
S Y,
Shin
J H, et al.
Coeffient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier.
Appl Phys Lett,
2002, 81: 3720-3722
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coeffient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier&author=Han H S&author=Seo S Y&author=Shin J H&publication_year=2002&journal=Appl Phys Lett&volume=81&pages=3720-3722
[34]
Kanjilal
A,
Rebohle
L,
Skorupa
W, et al.
Correlation between the microstructure and electroluminescence properties of Er-doped metal-oxide semiconductor structures.
Appl Phys Lett,
2009, 94: 101916
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Correlation between the microstructure and electroluminescence properties of Er-doped metal-oxide semiconductor structures&author=Kanjilal A&author=Rebohle L&author=Skorupa W&publication_year=2009&journal=Appl Phys Lett&volume=94&pages=101916
[35]
Jambois
O,
Berencen
Y,
Hijazi
K, et al.
Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions.
J Appl Phys,
2009, 106: 063526
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions&author=Jambois O&author=Berencen Y&author=Hijazi K&publication_year=2009&journal=J Appl Phys&volume=106&pages=063526
[36]
Jambois
O,
Gourbilleau
F,
Kenyon
A J, et al.
Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters.
Opt Express,
2010, 18: 2230-2235
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters&author=Jambois O&author=Gourbilleau F&author=Kenyon A J&publication_year=2010&journal=Opt Express&volume=18&pages=2230-2235
[37]
Suh
K,
Shin
J H,
Seo
S J, et al.
Er3+ Luminescence and cooperative upconversion in ErxY2-xSiO5 nanocrystal aggregates fabricated using si nanowires.
Appl Phys Lett,
2008, 92: 121910
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Er3+ Luminescence and cooperative upconversion in ErxY2-xSiO5 nanocrystal aggregates fabricated using si nanowires&author=Suh K&author=Shin J H&author=Seo S J&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=121910
[38]
Suh
K,
Lee
M,
Soo
C J, et al.
Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides.
Opt Express,
2010, 18: 7724-7729
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides&author=Suh K&author=Lee M&author=Soo C J&publication_year=2010&journal=Opt Express&volume=18&pages=7724-7729
[39]
Wang
X J,
Yuan
G,
Isshiki
H, et al.
Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide.
J Appl Phys,
2010, 108: 013506
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photoluminescence enhancement and high gain amplification of ErxY2-xSiO5 waveguide&author=Wang X J&author=Yuan G&author=Isshiki H&publication_year=2010&journal=J Appl Phys&volume=108&pages=013506
[40]
Guo
R M,
Wang
X J,
Zang
K, et al.
Optical amplification in Er/Yb silicate strip loaded waveguide.
Appl Phys Lett,
2011, 99: 161115
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical amplification in Er/Yb silicate strip loaded waveguide&author=Guo R M&author=Wang X J&author=Zang K&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=161115
[41]
Yin
Y,
Sun
K,
Xu
W J, et al.
1. 53 μm photo and electroluminescence from Er3+ in erbium silicate.
J Phys-Condensed Matter,
2009, 21: 012204
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=1. 53 μm photo and electroluminescence from Er3+ in erbium silicate&author=Yin Y&author=Sun K&author=Xu W J&publication_year=2009&journal=J Phys-Condensed Matter&volume=21&pages=012204
[42]
Yin
Y,
Xu
W J,
Wei
F, et al.
Room Temperature Er3+ 1. 54 μm electroluminescence from Si-rich erbium silicate deposited by magnetron sputtering.
J Phys D-Appl Phys,
2010, 43: 335102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Room Temperature Er3+ 1. 54 μm electroluminescence from Si-rich erbium silicate deposited by magnetron sputtering&author=Yin Y&author=Xu W J&author=Wei F&publication_year=2010&journal=J Phys D-Appl Phys&volume=43&pages=335102
[43]
Wang
B,
Guo
R M,
Wang
X J, et al.
Near-infrared electroluminescence in ErYb silicate based light-emitting device.
Opt Mater,
2012, 34: 1371-1374
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Near-infrared electroluminescence in ErYb silicate based light-emitting device&author=Wang B&author=Guo R M&author=Wang X J&publication_year=2012&journal=Opt Mater&volume=34&pages=1371-1374
[44]
Wang
L,
Guo
R M,
Wang
B, et al.
Hybrid Si3N 4-Er/Yb silicate waveguides for amplifier application.
IEEE Photon Technol Lett,
2012, 24: 900-902
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hybrid Si3N 4-Er/Yb silicate waveguides for amplifier application&author=Wang L&author=Guo R M&author=Wang B&publication_year=2012&journal=IEEE Photon Technol Lett&volume=24&pages=900-902
[45]
Shin
J H,
Lee
M.
Reducing optical losses and energy-transfer upconversion in ErxY2- xSiO5 waveguides.
IEEE Photon Technol Lett,
2013, 25: 1801-1804
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reducing optical losses and energy-transfer upconversion in ErxY2- xSiO5 waveguides&author=Shin J H&author=Lee M&publication_year=2013&journal=IEEE Photon Technol Lett&volume=25&pages=1801-1804
[46]
Yin
L,
Ning
H,
Turkdogan
S, et al.
Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material.
Appl Phys Lett,
2012, 100: 241905
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material&author=Yin L&author=Ning H&author=Turkdogan S&publication_year=2012&journal=Appl Phys Lett&volume=100&pages=241905
[47]
Boyraz
O,
Jalali
B.
Demonstration of a silicon Raman laser.
Opt Express,
2004, 12: 5269-5273
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Demonstration of a silicon Raman laser&author=Boyraz O&author=Jalali B&publication_year=2004&journal=Opt Express&volume=12&pages=5269-5273
[48]
Boyraz
O,
Jalali
B.
Demonstration of directly modulated silicon Raman laser.
Opt Express,
2005, 13: 796-800
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Demonstration of directly modulated silicon Raman laser&author=Boyraz O&author=Jalali B&publication_year=2005&journal=Opt Express&volume=13&pages=796-800
[49]
Rong
H,
Xu
S,
Kuo
Y H, et al.
Low-threshold continuouswave Raman silicon laser.
Nat Photon,
2007, 1: 232-237
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-threshold continuouswave Raman silicon laser&author=Rong H&author=Xu S&author=Kuo Y H&publication_year=2007&journal=Nat Photon&volume=1&pages=232-237
[50]
Jalali
B,
Raghunathan
V,
Shori
R, et al.
Prospects for silicon mid-IR Raman lasers.
IEEE J Sel Top Quantum Electron,
2006, 12: 1618-1626
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prospects for silicon mid-IR Raman lasers&author=Jalali B&author=Raghunathan V&author=Shori R&publication_year=2006&journal=IEEE J Sel Top Quantum Electron&volume=12&pages=1618-1626
[51]
Liu
X,
Osgood
R M,
Vlasov
Y A, et al.
Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides.
Nat Photon,
2010, 4: 557-560
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides&author=Liu X&author=Osgood R M&author=Vlasov Y A&publication_year=2010&journal=Nat Photon&volume=4&pages=557-560
[52]
Zlatanovic
S,
Park
J S,
Moro
S, et al.
Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source.
Nat Photon,
2010, 4: 561-564
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source&author=Zlatanovic S&author=Park J S&author=Moro S&publication_year=2010&journal=Nat Photon&volume=4&pages=561-564
[53]
Jalali
B.
Silicon photonics: nonlinear optics in the midinfrared.
Nat Photon,
2010, 4: 506-508
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonics: nonlinear optics in the midinfrared&author=Jalali B&publication_year=2010&journal=Nat Photon&volume=4&pages=506-508
[54]
Liu
J,
Sun
X,
Pan
D, et al.
Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si.
Opt Express,
2007, 15: 11272-11277
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si&author=Liu J&author=Sun X&author=Pan D&publication_year=2007&journal=Opt Express&volume=15&pages=11272-11277
[55]
Ishikawa
Y,
Wada
K,
Cannon
D D, et al.
Strain-induced band gap shrinkage in Ge grown on Si substrate.
Appl Phys Lett,
2003, 82: 2044-2046
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strain-induced band gap shrinkage in Ge grown on Si substrate&author=Ishikawa Y&author=Wada K&author=Cannon D D&publication_year=2003&journal=Appl Phys Lett&volume=82&pages=2044-2046
[56]
Liu
J,
Cannon
D D,
Wada
K, et al.
Silicidation-induced band gap shrinkage in Ge epitaxial films on Si.
Appl Phys Lett,
2004, 84: 660-662
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicidation-induced band gap shrinkage in Ge epitaxial films on Si&author=Liu J&author=Cannon D D&author=Wada K&publication_year=2004&journal=Appl Phys Lett&volume=84&pages=660-662
[57]
Cheng
S L,
Shambat
G,
Lu
J, et al.
Characterizations of direct band gap photoluminescence and electroluminescence from epi-Ge on Si.
ECS Trans,
2010, 33: 545-554
Google Scholar
http://scholar.google.com/scholar_lookup?title=Characterizations of direct band gap photoluminescence and electroluminescence from epi-Ge on Si&author=Cheng S L&author=Shambat G&author=Lu J&publication_year=2010&journal=ECS Trans&volume=33&pages=545-554
[58]
Sun
X,
Liu
J,
Kimerling
L C, et al.
Toward a germanium laser for integrated silicon photonics.
IEEE J Sel Top Quantum Electron,
2010, 16: 124-131
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Toward a germanium laser for integrated silicon photonics&author=Sun X&author=Liu J&author=Kimerling L C&publication_year=2010&journal=IEEE J Sel Top Quantum Electron&volume=16&pages=124-131
[59]
Sun
X,
Liu
J,
Kimerling
L C, et al.
Direct gap photoluminescence of n-type tensile-strained Ge-on-Si.
Appl Phys Lett,
2009, 95: 011911
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct gap photoluminescence of n-type tensile-strained Ge-on-Si&author=Sun X&author=Liu J&author=Kimerling L C&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=011911
[60]
Liu
J,
Sun
X,
Camacho-Aguilera
R, et al.
Ge-on-Si laser operating at room temperature.
Opt Lett,
2010, 35: 679-681
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ge-on-Si laser operating at room temperature&author=Liu J&author=Sun X&author=Camacho-Aguilera R&publication_year=2010&journal=Opt Lett&volume=35&pages=679-681
[61]
Rodolfo
E,
Cai
Y,
Patel
N, et al.
An electrically pumped germanium laser.
Opt Express,
2012, 20: 11316-11320
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An electrically pumped germanium laser&author=Rodolfo E&author=Cai Y&author=Patel N&publication_year=2012&journal=Opt Express&volume=20&pages=11316-11320
[62]
Liang
D,
Bowers
J E,
Oakley
D C, et al.
High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits.
Electrochem Solid-State Lett,
2009, 12: H101-H104
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-quality 150 mm InP-to-silicon epitaxial transfer for silicon photonic integrated circuits&author=Liang D&author=Bowers J E&author=Oakley D C&publication_year=2009&journal=Electrochem Solid-State Lett&volume=12&pages=H101-H104
[63]
Liang
D,
Bowers
J E.
Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate.
J Vac Sci Technol B,
2008, 26: 1560-1568
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate&author=Liang D&author=Bowers J E&publication_year=2008&journal=J Vac Sci Technol B&volume=26&pages=1560-1568
[64]
Roelkens
G,
Thourhout
D Van,
Baets
R, et al.
Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit.
Opt Express,
2006, 14: 8154-8159
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit&author=Roelkens G&author=Thourhout D Van&author=Baets R&publication_year=2006&journal=Opt Express&volume=14&pages=8154-8159
[65]
Campenhout
J Van,
Liu
L,
Romeo
P Rojo, et al.
A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks.
IEEE Photon Technol Lett,
2008, 20: 1345-1347
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks&author=Campenhout J Van&author=Liu L&author=Romeo P Rojo&publication_year=2008&journal=IEEE Photon Technol Lett&volume=20&pages=1345-1347
[66]
Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4: 751–779.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Roelkens G, Liu L, Liang D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev, 2010, 4: 751–779&
[67]
Ohira
K,
Kobayashi
K,
Iizuka
N, et al.
On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide.
Opt Express,
2010, 18: 15440-15447
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide&author=Ohira K&author=Kobayashi K&author=Iizuka N&publication_year=2010&journal=Opt Express&volume=18&pages=15440-15447
[68]
Groenert
M E,
Leitz
C W,
Pitera
A J, et al.
Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers.
J Appl Phys,
2003, 93: 362-367
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers&author=Groenert M E&author=Leitz C W&author=Pitera A J&publication_year=2003&journal=J Appl Phys&volume=93&pages=362-367
[69]
Mi
Z,
Bhattacharya
P,
Yang
J, et al.
Roomtemperature self-organised in 0.5Ga0.5As quantum dot laser on silicon.
Electron Lett,
2005, 41: 742-744
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Roomtemperature self-organised in 0.5Ga0.5As quantum dot laser on silicon&author=Mi Z&author=Bhattacharya P&author=Yang J&publication_year=2005&journal=Electron Lett&volume=41&pages=742-744
[70]
Chen
R,
Tran
T T D,
Ng
K W, et al.
Nanolasers grown on Silicon.
Nat Photonics,
2011, 5: 170-175
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanolasers grown on Silicon&author=Chen R&author=Tran T T D&author=Ng K W&publication_year=2011&journal=Nat Photonics&volume=5&pages=170-175
[71]
Gao
F,
Wang
Y,
Cao
G, et al.
Reduction of sidewall roughness in silicon-on-insulator rib waveguides.
Appl Surf Sci,
2006, 252: 5071-5075
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reduction of sidewall roughness in silicon-on-insulator rib waveguides&author=Gao F&author=Wang Y&author=Cao G&publication_year=2006&journal=Appl Surf Sci&volume=252&pages=5071-5075
[72]
Deri
R J,
Kapon
E.
Low-loss III-V semiconductor optical waveguides.
IEEE J Quantum Electron,
1991, 27: 626-640
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-loss III-V semiconductor optical waveguides&author=Deri R J&author=Kapon E&publication_year=1991&journal=IEEE J Quantum Electron&volume=27&pages=626-640
[73]
Yap
K P,
Delage
A,
Lapointe
J, et al.
Correlation of scattering Loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides.
J Lightwave Technol,
2009, 27: 3999-4008
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Correlation of scattering Loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides&author=Yap K P&author=Delage A&author=Lapointe J&publication_year=2009&journal=J Lightwave Technol&volume=27&pages=3999-4008
[74]
Takahashi
J I,
Tsuchizawa
T,
Watanabe
T, et al.
Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides.
J Vac Sci Technol B,
2004, 22: 2522-2525
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides&author=Takahashi J I&author=Tsuchizawa T&author=Watanabe T&publication_year=2004&journal=J Vac Sci Technol B&volume=22&pages=2522-2525
[75]
Gao
F,
Wang
Y,
Cao
G, et al.
Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides.
Appl Phys B-Lasers Opt,
2005, 81: 691-694
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides&author=Gao F&author=Wang Y&author=Cao G&publication_year=2005&journal=Appl Phys B-Lasers Opt&volume=81&pages=691-694
[76]
Lee
M C M,
Wu
M C.
Thermal annealing in Hydrogen for 3-D profile transformation on silicon-oninsulator and sidewall roughness reduction.
J Microelectromech S,
2006, 15: 338-343
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal annealing in Hydrogen for 3-D profile transformation on silicon-oninsulator and sidewall roughness reduction&author=Lee M C M&author=Wu M C&publication_year=2006&journal=J Microelectromech S&volume=15&pages=338-343
[77]
Borselli
M,
Johnson
T J,
Michael
C P, et al.
Surface encapsulation for low-loss silicon photonics.
Appl Phys Lett,
2007, 91: 131117
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface encapsulation for low-loss silicon photonics&author=Borselli M&author=Johnson T J&author=Michael C P&publication_year=2007&journal=Appl Phys Lett&volume=91&pages=131117
[78]
Gao
F,
Wang
Y,
Cao
G, et al.
Reduction of sidewall roughness in silicon-on-insulator rib waveguides.
Appl Surf Sci,
2006, 252: 5071-5075
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reduction of sidewall roughness in silicon-on-insulator rib waveguides&author=Gao F&author=Wang Y&author=Cao G&publication_year=2006&journal=Appl Surf Sci&volume=252&pages=5071-5075
[79]
Xia
Q,
Murphy
P F,
Gao
H, et al.
Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction.
Nanotechnology,
2009, 20: 345302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction&author=Xia Q&author=Murphy P F&author=Gao H&publication_year=2009&journal=Nanotechnology&volume=20&pages=345302
[80]
Huang Y, Luo X, J Song, et al. Low loss (<0.2 dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics. In: Optical Fiber Communication Conference, San Francisco, 2014, Th1A-1.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Y, Luo X, J Song, et al. Low loss (<0.2 dB per transition) CMOS compatible multi-layer Si3N4-on-SOI platform with thermal-optics device integration for silicon photonics. In: Optical Fiber Communication Conference, San Francisco, 2014, Th1A-1&
[81]
Taillaert
D,
W
Bogaerts,
Bienstman
P, et al.
An out-ofplane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers.
IEEE J Quantum Electron,
2002, 38: 949-955
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An out-ofplane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers&author=Taillaert D&author=W Bogaerts&author=Bienstman P&publication_year=2002&journal=IEEE J Quantum Electron&volume=38&pages=949-955
[82]
Taillaert
D,
Laere
F Van,
Ayre
M, et al.
Grating couplers forcoupling between optical fibers and nanophotonic waveguides.
Jpn J Appl Phys,
2006, 45: 6071-6077
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Grating couplers forcoupling between optical fibers and nanophotonic waveguides&author=Taillaert D&author=Laere F Van&author=Ayre M&publication_year=2006&journal=Jpn J Appl Phys&volume=45&pages=6071-6077
[83]
Chen
X,
Li
C,
Tsang
H K.
Two dimensional silicon waveguide chirped grating couplers for vertical optical fibers.
Opt Commun,
2010, 283: 2146-2149
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two dimensional silicon waveguide chirped grating couplers for vertical optical fibers&author=Chen X&author=Li C&author=Tsang H K&publication_year=2010&journal=Opt Commun&volume=283&pages=2146-2149
[84]
Alonso-Ramos
C,
Ortega-Mo?ux
A,
Molina-Fernández
I, et al.
Efficient fiber to-chip grating coupler formicrometric SOI rib waveguides.
Opt Express,
2010, 18: 15189-15200
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient fiber to-chip grating coupler formicrometric SOI rib waveguides&author=Alonso-Ramos C&author=Ortega-Mo?ux A&author=Molina-Fernández I&publication_year=2010&journal=Opt Express&volume=18&pages=15189-15200
[85]
Gunn
G.
CMOS Photonics for high-speed interconnects.
IEEE Micro,
2006, 26: 58-66
Google Scholar
http://scholar.google.com/scholar_lookup?title=CMOS Photonics for high-speed interconnects&author=Gunn G&publication_year=2006&journal=IEEE Micro&volume=26&pages=58-66
[86]
Yang
J,
Zhou
Z,
Jia
H, et al.
A compact double-layer subwavelength binary blazed grating 1×4 splitter based on silicon-on-insulator.
Opt Lett,
2011, 36(14): 2614-2617
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A compact double-layer subwavelength binary blazed grating 1×4 splitter based on silicon-on-insulator&author=Yang J&author=Zhou Z&author=Jia H&publication_year=2011&journal=Opt Lett&volume=36&issue=14&pages=2614-2617
[87]
Feng
J,
Zhou
Z.
Polarization beam splitter using a binary blazed grating coupler.
Opt Lett,
2007, 32: 1662-1665
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polarization beam splitter using a binary blazed grating coupler&author=Feng J&author=Zhou Z&publication_year=2007&journal=Opt Lett&volume=32&pages=1662-1665
[88]
Zaoui
W S,
Kunze
A,
Vogel
W, et al.
Bridging the gap between optical fibers and silicon photonic integrated circuits.
Opt Express,
2014, 22: 1277-1286
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bridging the gap between optical fibers and silicon photonic integrated circuits&author=Zaoui W S&author=Kunze A&author=Vogel W&publication_year=2014&journal=Opt Express&volume=22&pages=1277-1286
[89]
Trinh
P D,
Yegnanarayanan
S,
Coppinger
F, et al.
Silicon-on-insulator (SOI) phased-array wavelengthmulti/demultiplexer with extremely low-polarization sensitivity.
IEEE Photon Technol Lett,
1997, 9: 940-942
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-on-insulator (SOI) phased-array wavelengthmulti/demultiplexer with extremely low-polarization sensitivity&author=Trinh P D&author=Yegnanarayanan S&author=Coppinger F&publication_year=1997&journal=IEEE Photon Technol Lett&volume=9&pages=940-942
[90]
Suzuki
S,
Sumida
S,
Inoue
Y, et al.
Polarisation-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion adjusted to Si substrate.
Electron Lett,
1997, 33: 1173-1174
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polarisation-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion adjusted to Si substrate&author=Suzuki S&author=Sumida S&author=Inoue Y&publication_year=1997&journal=Electron Lett&volume=33&pages=1173-1174
[91]
Xiang
L,
Yu
Y,
Gao
D, et al.
Silicon based integrated comb filter and demultiplexer for simultaneous WDM signal processing.
IEEE J Sel Top Quant,
2014, 20: 8200208
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon based integrated comb filter and demultiplexer for simultaneous WDM signal processing&author=Xiang L&author=Yu Y&author=Gao D&publication_year=2014&journal=IEEE J Sel Top Quant&volume=20&pages=8200208
[92]
Vahala
K J.
Optical microcavities.
Nature,
2003, 424: 839-846
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical microcavities&author=Vahala K J&publication_year=2003&journal=Nature&volume=424&pages=839-846
[93]
Daldosso
N,
Pavesi
L.
Nanosilicon photonics.
Laser Photon Rev,
2009, 3: 508-534
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanosilicon photonics&author=Daldosso N&author=Pavesi L&publication_year=2009&journal=Laser Photon Rev&volume=3&pages=508-534
[94]
Peter
H D,
Jeroen
D C,
Peter
V, et al.
Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings.
J Lightwave Technol,
2013, 31: 3085-3092
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings&author=Peter H D&author=Jeroen D C&author=Peter V&publication_year=2013&journal=J Lightwave Technol&volume=31&pages=3085-3092
[95]
Ong
J R,
Kumar
R,
Mookherjea
S.
Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters.
IEEE Photon Technol Lett,
2013, 25: 1543-1546
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters&author=Ong J R&author=Kumar R&author=Mookherjea S&publication_year=2013&journal=IEEE Photon Technol Lett&volume=25&pages=1543-1546
[96]
Li
Q,
Eftekhar
A A,
Alipour
P, et al.
Low-loss microdisk-based delay lines for narrowband optical filters.
IEEE Photon Technol Lett,
2012, 24: 1276-1278
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-loss microdisk-based delay lines for narrowband optical filters&author=Li Q&author=Eftekhar A A&author=Alipour P&publication_year=2012&journal=IEEE Photon Technol Lett&volume=24&pages=1276-1278
[97]
Dong
P,
Feng
N N,
Feng
D, et al.
GHz-bandwidth optical filters based on high-order silicon ring resonators.
Opt Express,
2010, 18: 23784-23789
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=GHz-bandwidth optical filters based on high-order silicon ring resonators&author=Dong P&author=Feng N N&author=Feng D&publication_year=2010&journal=Opt Express&volume=18&pages=23784-23789
[98]
Popovi?
M A,
Barwicz
T,
Watts
M R, et al.
Multistage high-order microring-resonator add-drop filters.
Opt Lett,
2006, 31: 2571-2573
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multistage high-order microring-resonator add-drop filters&author=Popovi? M A&author=Barwicz T&author=Watts M R&publication_year=2006&journal=Opt Lett&volume=31&pages=2571-2573
[99]
Xiao
S,
Khan
M H,
Shen
H, et al.
Silicon-oninsulator microring add-drop filters with free spectral ranges over 30 nm.
J Lightwave Technol,
2008, 26: 228-236
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-oninsulator microring add-drop filters with free spectral ranges over 30 nm&author=Xiao S&author=Khan M H&author=Shen H&publication_year=2008&journal=J Lightwave Technol&volume=26&pages=228-236
[100]
Kokubun Y. Vertically coupled microring resonator filter for integrated add/drop node. IEICE Trans Electron, 2005, E88-C: 349–361.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kokubun Y. Vertically coupled microring resonator filter for integrated add/drop node. IEICE Trans Electron, 2005, E88-C: 349–361&
[101]
Yamada
K,
Shoji
T,
Tsuchizawa
T, et al.
Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges.
Opt Lett,
2003, 28: 1663-1664
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-wire-based ultrasmall lattice filters with wide free spectral ranges&author=Yamada K&author=Shoji T&author=Tsuchizawa T&publication_year=2003&journal=Opt Lett&volume=28&pages=1663-1664
[102]
Tsuchizawa
T,
Yamada
K,
Fukuda
H, et al.
Microphotonics devices based on silicon microfabrication technology.
IEEE J Sel Top Quant,
2005, 11: 232-240
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microphotonics devices based on silicon microfabrication technology&author=Tsuchizawa T&author=Yamada K&author=Fukuda H&publication_year=2005&journal=IEEE J Sel Top Quant&volume=11&pages=232-240
[103]
Poon
A W,
Li
C,
Ning
M A, et al.
Photonics filters, switches and subsystems for next-generation optical networks.
HKIE Trans,
2004, 11: 60-67
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photonics filters, switches and subsystems for next-generation optical networks&author=Poon A W&author=Li C&author=Ning M A&publication_year=2004&journal=HKIE Trans&volume=11&pages=60-67
[104]
Lee
M C M,
Wu
M C.
MEMS-actuatedmicrodisk resonators with variable power coupling ratios.
IEEE Photon Technol Lett,
2005, 17: 1034-1036
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=MEMS-actuatedmicrodisk resonators with variable power coupling ratios&author=Lee M C M&author=Wu M C&publication_year=2005&journal=IEEE Photon Technol Lett&volume=17&pages=1034-1036
[105]
Yao
J,
Wu
M C.
Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators.
Opt Lett,
2009, 34: 2557-2559
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bandwidth-tunable add-drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators&author=Yao J&author=Wu M C&publication_year=2009&journal=Opt Lett&volume=34&pages=2557-2559
[106]
Knapczyk
M T,
Peralta
L G de,
Bernussi
A A, et al.
Reconfigurable add-drop optical filter based on arrays of digital micromirrors.
J Lightwave Technol,
2008, 26: 237-242
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reconfigurable add-drop optical filter based on arrays of digital micromirrors&author=Knapczyk M T&author=Peralta L G de&author=Bernussi A A&publication_year=2008&journal=J Lightwave Technol&volume=26&pages=237-242
[107]
Tang
Y,
Dai
D,
He
S.
Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits.
IEEE Photon Technol Lett,
2009, 21: 242-244
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits&author=Tang Y&author=Dai D&author=He S&publication_year=2009&journal=IEEE Photon Technol Lett&volume=21&pages=242-244
[108]
Ye
W,
Xu
D,
Janz
S, et al.
Passive broadband silicon-on-insulator polarization splitter.
Opt Lett,
2007, 32: 1492-1494
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Passive broadband silicon-on-insulator polarization splitter&author=Ye W&author=Xu D&author=Janz S&publication_year=2007&journal=Opt Lett&volume=32&pages=1492-1494
[109]
Saidani
N,
Belhadj
W,
AbdelMalek
F, et al.
Detailed investigation of self-imaging in multimode photonic crystal waveguides for applications in power and polarization beam splitters.
Opt Commun,
2012, 285: 3487-3492
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Detailed investigation of self-imaging in multimode photonic crystal waveguides for applications in power and polarization beam splitters&author=Saidani N&author=Belhadj W&author=AbdelMalek F&publication_year=2012&journal=Opt Commun&volume=285&pages=3487-3492
[110]
Dai
D,
Wang
Z,
Peters
J, et al.
Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides.
IEEE Photon Technol Lett,
2012, 24: 673-675
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact polarization beam splitter using an asymmetrical mach–zehnder interferometer based on silicon-on-insulator waveguides&author=Dai D&author=Wang Z&author=Peters J&publication_year=2012&journal=IEEE Photon Technol Lett&volume=24&pages=673-675
[111]
Fukuda
H,
Yamada
K,
Tsuchizawa
T, et al.
ltrasmall polarization splitter based on silicon wire waveguides.
Opt Express,
2006, 14: 12401-12408
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=ltrasmall polarization splitter based on silicon wire waveguides&author=Fukuda H&author=Yamada K&author=Tsuchizawa T&publication_year=2006&journal=Opt Express&volume=14&pages=12401-12408
[112]
Dai
D,
Bauters
J,
Bowers
J E.
Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction.
Light-Sci Appl,
2012, 1: 1-12
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction&author=Dai D&author=Bauters J&author=Bowers J E&publication_year=2012&journal=Light-Sci Appl&volume=1&pages=1-12
[113]
Hosseini
A,
Rahimi
S,
Xu
X, et al.
Ultracompact and fabrication-tolerant integrated polarization splitter.
Opt Lett,
2011, 36: 4047-4049
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultracompact and fabrication-tolerant integrated polarization splitter&author=Hosseini A&author=Rahimi S&author=Xu X&publication_year=2011&journal=Opt Lett&volume=36&pages=4047-4049
[114]
Huang Y, Zhao T, Yi H, et al. High extinction ratio polarization beam splitter with multimode interference coupler on SOI. Opt Commun, 2013, 307: 46–49.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Y, Zhao T, Yi H, et al. High extinction ratio polarization beam splitter with multimode interference coupler on SOI. Opt Commun, 2013, 307: 46–49&
[115]
Yin
M,
Huang
Y,
Yi
H, et al.
A compact polarization beam splitter based on silicon-on-insulator Asia communications and photonics conference.
In:
Proceedings of Asia Communications and Photonics Beijing.
2013, : AF2B-9
Google Scholar
http://scholar.google.com/scholar_lookup?title=A compact polarization beam splitter based on silicon-on-insulator Asia communications and photonics conference&author=Yin M&author=Huang Y&author=Yi H&publication_year=2013&pages=AF2B-9
[116]
Doerr
C R,
Gill
D M,
Gnauck
A H, et al.
Monolithic demodulator for 40 Gb/s DQPSK using a star coupler.
J Lightwave Technol,
2006, 24: 171-174
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic demodulator for 40 Gb/s DQPSK using a star coupler&author=Doerr C R&author=Gill D M&author=Gnauck A H&publication_year=2006&journal=J Lightwave Technol&volume=24&pages=171-174
[117]
Doerr
C R,
Zhang
L,
Chandrasekhar
S, et al.
Monolithic DQPSK receiver in InP with low polarization sensitivity.
IEEE Photon Technol Lett,
2007, 19: 1765-1767
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic DQPSK receiver in InP with low polarization sensitivity&author=Doerr C R&author=Zhang L&author=Chandrasekhar S&publication_year=2007&journal=IEEE Photon Technol Lett&volume=19&pages=1765-1767
[118]
Dragone
C.
Efficient N×N star coupler base on Fourier optics.
Electron Lett,
1988, 24: 942-944
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient N×N star coupler base on Fourier optics&author=Dragone C&publication_year=1988&journal=Electron Lett&volume=24&pages=942-944
[119]
Doerr
C R,
Zhang
L,
Winzer
P J.
Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating.
J Lightwave Technol,
2011, 29: 536-541
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating&author=Doerr C R&author=Zhang L&author=Winzer P J&publication_year=2011&journal=J Lightwave Technol&volume=29&pages=536-541
[120]
Zimmermann
L,
Voigt
K,
Winzer
G, et al.
C-band optical 90-hybrids based on silicon-on-insulator 4×4 waveguide couplers.
IEEE Photon Technol Lett,
2009, 21: 143-145
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=C-band optical 90-hybrids based on silicon-on-insulator 4×4 waveguide couplers&author=Zimmermann L&author=Voigt K&author=Winzer G&publication_year=2009&journal=IEEE Photon Technol Lett&volume=21&pages=143-145
[121]
Halir
R,
Roelkens
G,
Ortega-Mo?ux
A, et al.
High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler.
Opt Lett,
2011, 36: 178-180
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler&author=Halir R&author=Roelkens G&author=Ortega-Mo?ux A&publication_year=2011&journal=Opt Lett&volume=36&pages=178-180
[122]
Kunkel R, Bach H-G, Hoffmann D, et al. First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100 GE coherent frontends. In: Proceedings of IEEE Conference on Indium Phosphide and Related Materials, Newport Beach, 2009, TuB2. 2: 167–170.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kunkel R, Bach H-G, Hoffmann D, et al. First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100 GE coherent frontends. In: Proceedings of IEEE Conference on Indium Phosphide and Related Materials, Newport Beach, 2009, TuB2. 2: 167–170&
[123]
Sakamaki
Y,
Nasu
Y,
Hashimoto
T, et al.
Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range.
IEICE Electronics Express,
2010, 7: 216-221
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range&author=Sakamaki Y&author=Nasu Y&author=Hashimoto T&publication_year=2010&journal=IEICE Electronics Express&volume=7&pages=216-221
[124]
Jeong
S-H,
Morito
K.
Novel optical 90 hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI coupler.
J Lightwave Technol,
2010, 28: 1323-1331
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Novel optical 90 hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI coupler&author=Jeong S-H&author=Morito K&publication_year=2010&journal=J Lightwave Technol&volume=28&pages=1323-1331
[125]
Jeong
S-H,
Morito
K.
Compact optical 90° hybrid employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler.
Opt Express,
2010, 18: 4275-4288
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact optical 90° hybrid employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler&author=Jeong S-H&author=Morito K&publication_year=2010&journal=Opt Express&volume=18&pages=4275-4288
[126]
Yang
W,
Yin
M,
Li
Y, et al.
Ultra-compact optical 90° hybrid based on a wedge-shaped 2×4 MMI coupler and a 2×2 MMI coupler in silicon-on-insulator.
Opt Express,
2013, 21: 28423-28431
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultra-compact optical 90° hybrid based on a wedge-shaped 2×4 MMI coupler and a 2×2 MMI coupler in silicon-on-insulator&author=Yang W&author=Yin M&author=Li Y&publication_year=2013&journal=Opt Express&volume=21&pages=28423-28431
[127]
Reed
G T,
Mashanovich
G,
Gardes
F Y, et al.
Silicon optical modulators.
Nat Photonics,
2010, 4: 518-526
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon optical modulators&author=Reed G T&author=Mashanovich G&author=Gardes F Y&publication_year=2010&journal=Nat Photonics&volume=4&pages=518-526
[128]
Reed
G T,
Jason
Png C E.
Silicon optical modulators.
Mater Tod,
2005, 8: 40-50
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon optical modulators&author=Reed G T&author=Jason Png C E&publication_year=2005&journal=Mater Tod&volume=8&pages=40-50
[129]
Della
Corte F G,
Merenda
M,
Cocorullo
G, et al.
Modulation speed improvement in a Fabry-Perot thermo-optical modulator through a driving signal optimization technique.
Opt Eng,
2009, 48: 074601
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Modulation speed improvement in a Fabry-Perot thermo-optical modulator through a driving signal optimization technique&author=Della Corte F G&author=Merenda M&author=Cocorullo G&publication_year=2009&journal=Opt Eng&volume=48&pages=074601
[130]
Seo
S Y,
Lee
J,
Shin
J H, et al.
The thermooptic effect of Si nanocrystals in silicon-rich silicon oxide thin films.
Appl Phys Lett,
2004, 85: 2526-2528
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The thermooptic effect of Si nanocrystals in silicon-rich silicon oxide thin films&author=Seo S Y&author=Lee J&author=Shin J H&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=2526-2528
[131]
Dubovitsky
S,
Steier
W H,
Yegnanarayanan
S, et al.
Analysis and improvement of Mach–Zehnder modulator linearity performance for chirped and tunable optical carriers.
J Lightwave Technol,
2002, 20: 858-863
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis and improvement of Mach–Zehnder modulator linearity performance for chirped and tunable optical carriers&author=Dubovitsky S&author=Steier W H&author=Yegnanarayanan S&publication_year=2002&journal=J Lightwave Technol&volume=20&pages=858-863
[132]
Liao
L,
Samara-Rubio
D,
Morse
M, et al.
High speed siliconMach-Zehnder modulator.
Opt Express,
2005, 13: 3129-3135
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High speed siliconMach-Zehnder modulator&author=Liao L&author=Samara-Rubio D&author=Morse M&publication_year=2005&journal=Opt Express&volume=13&pages=3129-3135
[133]
Basak
J,
Liao
L,
Liu
A, et al.
Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms.
Adv Opt Technol,
2008, 2008: 678948
Google Scholar
http://scholar.google.com/scholar_lookup?title=Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms&author=Basak J&author=Liao L&author=Liu A&publication_year=2008&journal=Adv Opt Technol&volume=2008&pages=678948
[134]
Gardes
F Y,
Reed
G T,
Emerson
N G, et al.
A sub-micron depletion-type photonic modulator in silicon on insulator.
Opt Express,
2005, 13: 8845-8854
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A sub-micron depletion-type photonic modulator in silicon on insulator&author=Gardes F Y&author=Reed G T&author=Emerson N G&publication_year=2005&journal=Opt Express&volume=13&pages=8845-8854
[135]
You
J B,
Park
M,
Park
J W, et al.
12. 5 Gbps optical modulation of silicon racetrack resonator based on carrierdepletion in asymmetric p-n diode.
Opt Express,
2008, 16: 18340-18344
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=12. 5 Gbps optical modulation of silicon racetrack resonator based on carrierdepletion in asymmetric p-n diode&author=You J B&author=Park M&author=Park J W&publication_year=2008&journal=Opt Express&volume=16&pages=18340-18344
[136]
Park
J W,
You
J B,
Kim
I G, et al.
Highmodulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN diode.
Opt Express,
2009, 17: 15520-15524
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Highmodulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN diode&author=Park J W&author=You J B&author=Kim I G&publication_year=2009&journal=Opt Express&volume=17&pages=15520-15524
[137]
Liu
A,
Liao
L,
Rubin
D, et al.
Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide.
Semicond Sci Technol,
2008, 23: 064001
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide&author=Liu A&author=Liao L&author=Rubin D&publication_year=2008&journal=Semicond Sci Technol&volume=23&pages=064001
[138]
Thomson D J, Gardes F Y, Fedeli J M, et al. 50 Gb/s silicon optical modulator. IEEE Photon Technol Lett, 2012, 24: 234–236.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thomson D J, Gardes F Y, Fedeli J M, et al. 50 Gb/s silicon optical modulator. IEEE Photon Technol Lett, 2012, 24: 234–236&
[139]
Baba
T,
Akiyama
S,
Imai
M, et al.
50 Gb/s ring-resonator-based silicon modulator.
Opt Express,
2013, 21: 11869-11876
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=50 Gb/s ring-resonator-based silicon modulator&author=Baba T&author=Akiyama S&author=Imai M&publication_year=2013&journal=Opt Express&volume=21&pages=11869-11876
[140]
Xiao X, Xu H, Li X, et al. 60 Gbit/s silicon modulators with enhanced electro-optical efficiency. In: Optical Fiber Communication Conference, Anaheim, 2013, OW4J3: 1–3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xiao X, Xu H, Li X, et al. 60 Gbit/s silicon modulators with enhanced electro-optical efficiency. In: Optical Fiber Communication Conference, Anaheim, 2013, OW4J3: 1–3&
[141]
Biberman
A,
Timurdogan
E,
Zortman
W A, et al.
Adiabatic microring modulators.
Opt Express,
2012, 20: 29223-29236
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adiabatic microring modulators&author=Biberman A&author=Timurdogan E&author=Zortman W A&publication_year=2012&journal=Opt Express&volume=20&pages=29223-29236
[142]
Kuo
Y H,
Lee
Y K,
Ge
Y, et al.
Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators.
IEEE J Sel Top Quant,
2006, 12: 1503-1512
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators&author=Kuo Y H&author=Lee Y K&author=Ge Y&publication_year=2006&journal=IEEE J Sel Top Quant&volume=12&pages=1503-1512
[143]
Chaisakul
P,
Marris-Morini
D,
Isella
G, et al.
Quantumconfined Stark effect measurements in Ge/SiGe quantumwell structures.
Opt Lett,
2010, 35: 2913-2915
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantumconfined Stark effect measurements in Ge/SiGe quantumwell structures&author=Chaisakul P&author=Marris-Morini D&author=Isella G&publication_year=2010&journal=Opt Lett&volume=35&pages=2913-2915
[144]
Feng
D,
Liao
S,
Liang
H, et al.
High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide.
Opt Express,
2012, 20: 22224-22232
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide&author=Feng D&author=Liao S&author=Liang H&publication_year=2012&journal=Opt Express&volume=20&pages=22224-22232
[145]
Rong
Y,
Ge
Y,
Huo
Y, et al.
Quantum-confined stark effect in Ge/SiGe quantum wells on Si.
IEEE J Sel Top Quant,
2010, 16: 85-92
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum-confined stark effect in Ge/SiGe quantum wells on Si&author=Rong Y&author=Ge Y&author=Huo Y&publication_year=2010&journal=IEEE J Sel Top Quant&volume=16&pages=85-92
[146]
Janner
D,
Tulli
D,
García-Granda
M, et al.
Micro-structured integrated electro-optic LiNbO3 modulators.
Laser Photon Rev,
2009, 3: 301-313
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Micro-structured integrated electro-optic LiNbO3 modulators&author=Janner D&author=Tulli D&author=García-Granda M&publication_year=2009&journal=Laser Photon Rev&volume=3&pages=301-313
[147]
Clark
J,
Lanzani
G.
Organic photonics for communications.
Nat Photonics,
2010, 4: 438-446
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Organic photonics for communications&author=Clark J&author=Lanzani G&publication_year=2010&journal=Nat Photonics&volume=4&pages=438-446
[148]
Leuthold
J,
Koos
C,
Freude
W.
Nonlinear silicon photonics.
Nat Photonics,
2010, 4: 535-544
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonlinear silicon photonics&author=Leuthold J&author=Koos C&author=Freude W&publication_year=2010&journal=Nat Photonics&volume=4&pages=535-544
[149]
Leuthold
J,
Freude
W,
Brosi
J M, et al.
Silicon organic hybrid technology-A platform for practical nonlinear optics.
IEEE,
2009, 97: 1304-1316
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon organic hybrid technology-A platform for practical nonlinear optics&author=Leuthold J&author=Freude W&author=Brosi J M&publication_year=2009&journal=IEEE&volume=97&pages=1304-1316
[150]
Alloatti
L,
Palmer
R,
Diebold
S, et al.
100 GHz silicon-organic hybrid modulator.
Light: Sci Appl,
2014, 3: e173-e173
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=100 GHz silicon-organic hybrid modulator&author=Alloatti L&author=Palmer R&author=Diebold S&publication_year=2014&journal=Light: Sci Appl&volume=3&pages=e173-e173
[151]
Lauermann
M,
Palmer
R,
Koeber
S, et al.
16QAM silicon-organic hybrid (SOH) modulator operating with 0. 6 Vpp and 19 fJ/bit at 112 Gbit/s.
In:
CLEO.
2014, : SM2G-6
Google Scholar
http://scholar.google.com/scholar_lookup?title=16QAM silicon-organic hybrid (SOH) modulator operating with 0. 6 Vpp and 19 fJ/bit at 112 Gbit/s&author=Lauermann M&author=Palmer R&author=Koeber S&publication_year=2014&pages=SM2G-6
[152]
Liu
M,
Yin
X,
Ulin-Avila
E, et al.
A graphene-based broadband optical modulator.
Nature,
2011, 474: 64-67
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A graphene-based broadband optical modulator&author=Liu M&author=Yin X&author=Ulin-Avila E&publication_year=2011&journal=Nature&volume=474&pages=64-67
[153]
Midrio M, Galli P, Romagnoli M, et al. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon Res, 2014, 2: A34–A40.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Midrio M, Galli P, Romagnoli M, et al. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon Res, 2014, 2: A34–A40&
[154]
Du W, Hao R, Li E. The study of few-layer graphene based Mach-Zehnder modulator. Opt Commun, 2014, 323: 49–53.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Du W, Hao R, Li E. The study of few-layer graphene based Mach-Zehnder modulator. Opt Commun, 2014, 323: 49–53&
[155]
Casalino
M.
Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1. 55 μm fabrication and characterization.
Appl Phys Lett,
2008, 92: 251104
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1. 55 μm fabrication and characterization&author=Casalino M&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=251104
[156]
Casalino
M,
Sirleto
L,
Moretti
L, et al.
Design of a silicon RCE Schottky photodetector working at 1. 55 μm.
J Lumin,
2006, 121: 399-402
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design of a silicon RCE Schottky photodetector working at 1. 55 μm&author=Casalino M&author=Sirleto L&author=Moretti L&publication_year=2006&journal=J Lumin&volume=121&pages=399-402
[157]
Zhu
S,
Yu
M B,
Lo
G Q, et al.
Nearinfrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications.
Appl Phys Lett,
2008, 92: 081103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nearinfrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications&author=Zhu S&author=Yu M B&author=Lo G Q&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=081103
[158]
Brueck
S R J,
Diadiuk
V,
Jones
T, et al.
Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves.
Appl Phys Lett,
1985, 46: 915-917
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves&author=Brueck S R J&author=Diadiuk V&author=Jones T&publication_year=1985&journal=Appl Phys Lett&volume=46&pages=915-917
[159]
Torosian
K M,
Karakashian
A S,
Teng
Y Y.
Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes.
Appl Opt,
1987, 2: 2650-2652
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes&author=Torosian K M&author=Karakashian A S&author=Teng Y Y&publication_year=1987&journal=Appl Opt&volume=2&pages=2650-2652
[160]
Akbari
A,
Tait
R N,
Berini
P.
Surface plasmon waveguide schottky detector.
Opt Express,
2010, 18: 8505-8514
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface plasmon waveguide schottky detector&author=Akbari A&author=Tait R N&author=Berini P&publication_year=2010&journal=Opt Express&volume=18&pages=8505-8514
[161]
Scales
C,
Breukelaar
I,
Berini
P.
Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon.
Opt Lett,
2010, 35: 529-531
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon&author=Scales C&author=Breukelaar I&author=Berini P&publication_year=2010&journal=Opt Lett&volume=35&pages=529-531
[162]
Assefa
S,
Xia
F,
Bedell
S W, et al.
CMOS-integrated high-speed MSM germanium waveguide photodetector.
Opt Express,
2010, 18: 4986-4999
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=CMOS-integrated high-speed MSM germanium waveguide photodetector&author=Assefa S&author=Xia F&author=Bedell S W&publication_year=2010&journal=Opt Express&volume=18&pages=4986-4999
[163]
Sheng
Z,
Liu
L,
Brouckaert
J, et al.
InGaAs PIN photodetectors integrated on silicon-oninsulator waveguides.
Opt Express,
2010, 18: 1756-1761
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=InGaAs PIN photodetectors integrated on silicon-oninsulator waveguides&author=Sheng Z&author=Liu L&author=Brouckaert J&publication_year=2010&journal=Opt Express&volume=18&pages=1756-1761
[164]
Brouckaert
J,
Roelkens
G,
Thourhout
D Van, et al.
Thin-film III-V photodetectors integrated on silicon-oninsulator photonic ICs.
J Lightwave Technol,
2007, 25: 1053-1060
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thin-film III-V photodetectors integrated on silicon-oninsulator photonic ICs&author=Brouckaert J&author=Roelkens G&author=Thourhout D Van&publication_year=2007&journal=J Lightwave Technol&volume=25&pages=1053-1060
[165]
Sheng
Z,
Liu
L,
Brouckaert
J, et al.
InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides.
Opt Express,
2010, 18: 1756-1761
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides&author=Sheng Z&author=Liu L&author=Brouckaert J&publication_year=2010&journal=Opt Express&volume=18&pages=1756-1761
[166]
Feng
S,
Geng
Y,
Lau
K M, et al.
Epitaxial III-V-on-silicon waveguide butt-coupled photodetectors.
Opt Lett,
2012, 37: 4035-4037
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Epitaxial III-V-on-silicon waveguide butt-coupled photodetectors&author=Feng S&author=Geng Y&author=Lau K M&publication_year=2012&journal=Opt Lett&volume=37&pages=4035-4037
[167]
Stiff-Roberts
A D.
Quantum-dot infrared photodetectors: A review.
J Nanophoton,
2009, 3: 031607
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum-dot infrared photodetectors: A review&author=Stiff-Roberts A D&publication_year=2009&journal=J Nanophoton&volume=3&pages=031607
[168]
Barve
A V,
Lee
S J,
Noh
S K, et al.
Review of current progress in quantum dot infrared photodetectors.
Laser Photon Rev,
2010, 4: 738-750
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Review of current progress in quantum dot infrared photodetectors&author=Barve A V&author=Lee S J&author=Noh S K&publication_year=2010&journal=Laser Photon Rev&volume=4&pages=738-750
[169]
Schneider
H,
Liu
H C,
Winnerl
S, et al.
Room-temperature midinfrared two-photon photodetector.
Phys Rev B,
2008, 93: 101114
Google Scholar
http://scholar.google.com/scholar_lookup?title=Room-temperature midinfrared two-photon photodetector&author=Schneider H&author=Liu H C&author=Winnerl S&publication_year=2008&journal=Phys Rev B&volume=93&pages=101114
[170]
Luan
H C,
Lim
D R,
Lee
K K, et al.
High-quality Ge epilayers on Si with low threading-dislocation densities.
Appl Phys Lett,
1999, 75: 2909-2911
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-quality Ge epilayers on Si with low threading-dislocation densities&author=Luan H C&author=Lim D R&author=Lee K K&publication_year=1999&journal=Appl Phys Lett&volume=75&pages=2909-2911
[171]
Michel
J,
Liu
J,
Kimerling
L C.
High-performance Ge-on-Si photodetectors.
Nat Photon,
2010, 4: 527-534
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-performance Ge-on-Si photodetectors&author=Michel J&author=Liu J&author=Kimerling L C&publication_year=2010&journal=Nat Photon&volume=4&pages=527-534
[172]
Yamaguchi
M,
Tachikawa
M,
Sugo
M.
Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates.
Appl Phys Lett,
1990, 56: 27-29
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis for dislocation density reduction in selective area grown GaAs films on Si substrates&author=Yamaguchi M&author=Tachikawa M&author=Sugo M&publication_year=1990&journal=Appl Phys Lett&volume=56&pages=27-29
[173]
Vivien
L,
Osmond
J,
Fédéli
J M, et al.
42 GHz p. i. n germanium photodetector integrated in a silicon-on-insulator waveguide.
Opt Express,
2009, 17: 6252-6257
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=42 GHz p. i. n germanium photodetector integrated in a silicon-on-insulator waveguide&author=Vivien L&author=Osmond J&author=Fédéli J M&publication_year=2009&journal=Opt Express&volume=17&pages=6252-6257
[174]
Feng
D,
Liao
S,
Dong
P, et al.
High-speed Ge photodetectormonolithically integrated with large cross-section siliconon-insulator waveguide.
Appl Phys Lett,
2009, 95: 261105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-speed Ge photodetectormonolithically integrated with large cross-section siliconon-insulator waveguide&author=Feng D&author=Liao S&author=Dong P&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=261105
[175]
Beals
M,
Michel
J,
Liu
J F, et al.
Process flow innovations for photonic device integration in CMOS.
In:
Proceedings of Silicon Photonics III San Jose.
2008, : 689804
Google Scholar
http://scholar.google.com/scholar_lookup?title=Process flow innovations for photonic device integration in CMOS&author=Beals M&author=Michel J&author=Liu J F&publication_year=2008&pages=689804
[176]
Yin
T,
Cohen
R,
Morse
M M, et al.
31GHz Ge n-ip waveguide photodetectors on Silicon-on-Insulator substrate.
Opt Express,
2007, 15: 13965-13971
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=31GHz Ge n-ip waveguide photodetectors on Silicon-on-Insulator substrate&author=Yin T&author=Cohen R&author=Morse M M&publication_year=2007&journal=Opt Express&volume=15&pages=13965-13971
[177]
Ahn
D,
Hong
C Y,
Liu
J, et al.
High performance, waveguide integrated Ge photodetectors.
Opt Express,
2007, 15: 3916-3921
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High performance, waveguide integrated Ge photodetectors&author=Ahn D&author=Hong C Y&author=Liu J&publication_year=2007&journal=Opt Express&volume=15&pages=3916-3921
[178]
Vivien
L,
Polzer
A,
M-Morini
D, et al.
Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon.
Opt Express,
2012, 20: 1096-1101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon&author=Vivien L&author=Polzer A&author=M-Morini D&publication_year=2012&journal=Opt Express&volume=20&pages=1096-1101
[179]
Ding
L,
Liow
T Y,
Lim
E J, et al.
Ge waveguide photodetectors with responsivity roll-off beyond 1620 nm using localized stressor.
In:
proceedings of the Optical Fiber Communication Conference Los Angeles.
2012, : OW3G-4
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ge waveguide photodetectors with responsivity roll-off beyond 1620 nm using localized stressor&author=Ding L&author=Liow T Y&author=Lim E J&publication_year=2012&pages=OW3G-4
[180]
Takenaka
M,
Morii
K,
Sugiyama
M, et al.
Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping.
Opt Express,
2012, 20: 8718-8725
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping&author=Takenaka M&author=Morii K&author=Sugiyama M&publication_year=2012&journal=Opt Express&volume=20&pages=8718-8725
[181]
Novack
A,
Gould
M,
Yang
Y, et al.
Germanium photodetector with 60 GHz bandwidth using inductive gain peaking.
Opt Express,
2013, 21: 28387-28393
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Germanium photodetector with 60 GHz bandwidth using inductive gain peaking&author=Novack A&author=Gould M&author=Yang Y&publication_year=2013&journal=Opt Express&volume=21&pages=28387-28393
[182]
Kang
Y,
Liu
H D,
Morse
M, et al.
Monolithic germanium/silicon avalanche photodiodes with 340 GHz gainbandwidth product.
Nat Photonics,
2009, 3: 59-63
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic germanium/silicon avalanche photodiodes with 340 GHz gainbandwidth product&author=Kang Y&author=Liu H D&author=Morse M&publication_year=2009&journal=Nat Photonics&volume=3&pages=59-63
[183]
Zaoui
W S,
Chen
H W,
Bowers
J E, et al.
Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product.
Opt Express,
2009, 17: 12641-12649
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product&author=Zaoui W S&author=Chen H W&author=Bowers J E&publication_year=2009&journal=Opt Express&volume=17&pages=12641-12649
[184]
Kang
Y,
Saado
Y,
Morse
M, et al.
Ge/Si waveguide avalanche photodiodes on SOI substrates for high speed communication.
ECS Trans,
2010, 33: 757-764
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ge/Si waveguide avalanche photodiodes on SOI substrates for high speed communication&author=Kang Y&author=Saado Y&author=Morse M&publication_year=2010&journal=ECS Trans&volume=33&pages=757-764
[185]
Duan
N,
Liow
T Y,
Lim
A E, et al.
High Speed Waveguide-Integrated Ge/Si Avalanche Photodetector.
In:
Proceedings of Optical Fiber Communication Conference Anaheim.
2013, : OM3K-3
Google Scholar
http://scholar.google.com/scholar_lookup?title=High Speed Waveguide-Integrated Ge/Si Avalanche Photodetector&author=Duan N&author=Liow T Y&author=Lim A E&publication_year=2013&pages=OM3K-3
[186]
Carroll
M S,
Childs
K,
Jarecki
R, et al.
Ge-Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection.
Appl Phys Lett,
2008, 93: 183511
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ge-Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection&author=Carroll M S&author=Childs K&author=Jarecki R&publication_year=2008&journal=Appl Phys Lett&volume=93&pages=183511
[187]
Liu
A,
Liao
L,
Chetrit
Y et al.
Wavelength division multiplexing based photonic integrated circuits on siliconon-insulator platform.
IEEE J Sel Top Quant,
2010, 16: 23-32
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wavelength division multiplexing based photonic integrated circuits on siliconon-insulator platform&author=Liu A&author=Liao L&author=Chetrit Y et al&publication_year=2010&journal=IEEE J Sel Top Quant&volume=16&pages=23-32
[188]
Dong
P,
Xie
C,
Chen
L, et al.
112 Gb/s monolithic PDM-QPSK modulator in silicon.
Opt Express,
2012, 20: B624-B629
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=112 Gb/s monolithic PDM-QPSK modulator in silicon&author=Dong P&author=Xie C&author=Chen L&publication_year=2012&journal=Opt Express&volume=20&pages=B624-B629
[189]
Dong
P,
X
Liu,
Chandrasekhar
S, et al.
Monolithic Silicon Photonic Circuits Enable 112 Gb/s PDMQPSK Transmission over 2560 km SSMF.
In:
Proceedings of Optical Communication (ECOC 2013) 39th European Conference London.
2013, : 1-3
Google Scholar
http://scholar.google.com/scholar_lookup?title=Monolithic Silicon Photonic Circuits Enable 112 Gb/s PDMQPSK Transmission over 2560 km SSMF&author=Dong P&author=X Liu&author=Chandrasekhar S&publication_year=2013&pages=1-3
[190]
Dong
P,
Liu
X,
Sethumadhavan
C, et al.
224 Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits.
In:
Proceedings of National Fiber Optic Engineers Conference Anaheim.
2013, : PDP5C-6
Google Scholar
http://scholar.google.com/scholar_lookup?title=224 Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits&author=Dong P&author=Liu X&author=Sethumadhavan C&publication_year=2013&pages=PDP5C-6
[191]
Miller
D A B.
Optical interconnects to electronic chips.
Appl Opt,
2010, 49: F59-F70
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical interconnects to electronic chips&author=Miller D A B&publication_year=2010&journal=Appl Opt&volume=49&pages=F59-F70
[192]
McGrath
D.
Intel is developing optical chip-to-chip interconnects.
Electron Eng Times,
2009, 1556: 39
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intel is developing optical chip-to-chip interconnects&author=McGrath D&publication_year=2009&journal=Electron Eng Times&volume=1556&pages=39
[193]
Freymann
G,
Ledermann
A,
Thiel
M, et al.
Threedimensional nanostructures for photonics.
Adv Funct Mater,
2010, 20: 1038-1052
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Threedimensional nanostructures for photonics&author=Freymann G&author=Ledermann A&author=Thiel M&publication_year=2010&journal=Adv Funct Mater&volume=20&pages=1038-1052
[194]
Arakawa
Y,
Nakamura
T.
Urino Y, et al. Silicon photonics for next generation system integration platform.
IEEE Commun Mag,
2013, 51: 72-77
Google Scholar
http://scholar.google.com/scholar_lookup?title=Urino Y, et al. Silicon photonics for next generation system integration platform&author=Arakawa Y&author=Nakamura T&publication_year=2013&journal=IEEE Commun Mag&volume=51&pages=72-77
[195]
Urino
Y,
Shimizu
T,
Okano
M, et al.
First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon waveguide resonators.
In:
Proceedings of European Conference and Exposition on Optical Communications Geneva Switzerland.
2011, : We-9
Google Scholar
http://scholar.google.com/scholar_lookup?title=First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon waveguide resonators&author=Urino Y&author=Shimizu T&author=Okano M&publication_year=2011&pages=We-9
[196]
Densmore
A,
Vachon
M,
Xu
D X, et al.
Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection.
Opt Lett,
2009, 34: 3598-3600
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection&author=Densmore A&author=Vachon M&author=Xu D X&publication_year=2009&journal=Opt Lett&volume=34&pages=3598-3600
[197]
Claes
T,
Molera
J G,
Vos
K De, et al.
Label-free biosensing with a slot-waveguidebased ring resonator in silicon on insulator.
IEEE Photon Lett,
2009, 1: 197-204
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Label-free biosensing with a slot-waveguidebased ring resonator in silicon on insulator&author=Claes T&author=Molera J G&author=Vos K De&publication_year=2009&journal=IEEE Photon Lett&volume=1&pages=197-204
[198]
Janz
S,
Densmore
A,
Xu
D X, et al.
Silicon-based microphotonics for biosensing applications. In: Optical Waveguide Sensing and Imaging.
Netherlands:
Springer.
2008, : 167-194
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-based microphotonics for biosensing applications. In: Optical Waveguide Sensing and Imaging&author=Janz S&author=Densmore A&author=Xu D X&publication_year=2008&pages=167-194
[199]
Robinson
J T,
Chen
L,
Lipson
M.
On-chip gas detection in silicon opticalmicrocavities.
Opt Express,
2008, 16: 4296-4301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On-chip gas detection in silicon opticalmicrocavities&author=Robinson J T&author=Chen L&author=Lipson M&publication_year=2008&journal=Opt Express&volume=16&pages=4296-4301
[200]
Schmid
J H,
Sinclair
W,
García
J, et al.
Silicon-oninsulator guided mode resonant grating for evanescent field molecular sensing.
Opt Express,
2009, 17: 18371-18380
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon-oninsulator guided mode resonant grating for evanescent field molecular sensing&author=Schmid J H&author=Sinclair W&author=García J&publication_year=2009&journal=Opt Express&volume=17&pages=18371-18380
[201]
Torres-Costa
V,
Martin-Palma
R J.
Application of nanostructured porous silicon in the field of optics.
J Mater Sci,
2010, 45: 2823-2838
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Application of nanostructured porous silicon in the field of optics&author=Torres-Costa V&author=Martin-Palma R J&publication_year=2010&journal=J Mater Sci&volume=45&pages=2823-2838
[202]
Schultz O, Glunz S W, Willeke G P. Multicrystalline silicon solar cells exceeding 20% efficiency. Prog Photovoltaics Res Appl, 2004, 12: 553–558.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Schultz O, Glunz S W, Willeke G P. Multicrystalline silicon solar cells exceeding 20% efficiency. Prog Photovoltaics Res Appl, 2004, 12: 553–558&
[203]
Sai
H,
Saito
K,
Hozuki
N, et al.
Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells.
Appl Phys Lett,
2013, 102: 053509
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells&author=Sai H&author=Saito K&author=Hozuki N&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=053509