References
[1]
Bennett
C H,
Brassard
G.
Quantum cryptography: Public-key distribution and coin tossing. In: The Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing.
Bangalore:
IEEE Press.
1984, : 175-179
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum cryptography: Public-key distribution and coin tossing. In: The Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing&author=Bennett C H&author=Brassard G&publication_year=1984&pages=175-179
[2]
Bennett
C H,
Brassard
G,
Mermin
N D.
Quantum cryptography without Bell theorem.
Phys Rev Lett,
1992, 68: 557-559
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum cryptography without Bell theorem&author=Bennett C H&author=Brassard G&author=Mermin N D&publication_year=1992&journal=Phys Rev Lett&volume=68&pages=557-559
[3]
Cabello
A.
Quantum key distribution in the Holevo limit.
Phys Rev Lett,
2000, 85: 5635-5638
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum key distribution in the Holevo limit&author=Cabello A&publication_year=2000&journal=Phys Rev Lett&volume=85&pages=5635-5638
[4]
Deng
F G,
Long
G L.
Controlled order rearrangement encryption for quantum key distribution.
Phys Rev A,
2003, 68: 042315
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Controlled order rearrangement encryption for quantum key distribution&author=Deng F G&author=Long G L&publication_year=2003&journal=Phys Rev A&volume=68&pages=042315
[5]
Deng
F G,
Long
G L.
Bidirectional quantum key distribution protocol with practical faint laser pulses.
Phys Rev A,
2004, 70: 012311
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bidirectional quantum key distribution protocol with practical faint laser pulses&author=Deng F G&author=Long G L&publication_year=2004&journal=Phys Rev A&volume=70&pages=012311
[6]
Long
G L,
Liu
X S.
Theoretically efficient high-capacity quantum-key-distribution scheme.
Phys Rev A,
2002, 65: 032302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Theoretically efficient high-capacity quantum-key-distribution scheme&author=Long G L&author=Liu X S&publication_year=2002&journal=Phys Rev A&volume=65&pages=032302
[7]
Bostrom
K,
Felbinger
T.
Deterministic secure direct communication using entanglement.
Phys Rev Lett,
2002, 89: 187902
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deterministic secure direct communication using entanglement&author=Bostrom K&author=Felbinger T&publication_year=2002&journal=Phys Rev Lett&volume=89&pages=187902
[8]
Deng
F G,
Long
G L,
Liu
X S.
Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block.
Phys Rev A,
2003, 68: 042317
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block&author=Deng F G&author=Long G L&author=Liu X S&publication_year=2003&journal=Phys Rev A&volume=68&pages=042317
[9]
Deng
F G,
Long
G L.
Secure direct communication with a quantum one-time pad.
Phys Rev A,
2004, 69: 052319
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secure direct communication with a quantum one-time pad&author=Deng F G&author=Long G L&publication_year=2004&journal=Phys Rev A&volume=69&pages=052319
[10]
Wang
C,
Deng
F G,
Li
Y S, et al.
Quantum secure direct communication with high-dimension quantum superdense coding.
Phys Rev A,
2005, 71: 044305
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum secure direct communication with high-dimension quantum superdense coding&author=Wang C&author=Deng F G&author=Li Y S&publication_year=2005&journal=Phys Rev A&volume=71&pages=044305
[11]
Wang
T J,
Li
T,
Du
F F, et al.
High-capacity quantum secure direct communication based on quantum hyperdense coding with Hyperentanglement.
Chin Phys Lett,
2011, 28: 040305
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-capacity quantum secure direct communication based on quantum hyperdense coding with Hyperentanglement&author=Wang T J&author=Li T&author=Du F F&publication_year=2011&journal=Chin Phys Lett&volume=28&pages=040305
[12]
Sun
Z W,
Du
R G,
Long
D Y.
Quantum secure direct communication with two-photon four-qubit cluster states.
Int J Theor Phys,
2012, 51: 1946-1952
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum secure direct communication with two-photon four-qubit cluster states&author=Sun Z W&author=Du R G&author=Long D Y&publication_year=2012&journal=Int J Theor Phys&volume=51&pages=1946-1952
[13]
Liu
D,
Chen
J L,
Jiang
W.
High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom.
Int J Theor Phys,
2012, 51: 2923-2929
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom&author=Liu D&author=Chen J L&author=Jiang W&publication_year=2012&journal=Int J Theor Phys&volume=51&pages=2923-2929
[14]
Ren
B C,
Wei
H R,
Hua
M, et al.
Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems.
Eur Phys J D,
2013, 67: 30-37
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems&author=Ren B C&author=Wei H R&author=Hua M&publication_year=2013&journal=Eur Phys J D&volume=67&pages=30-37
[15]
Hillery
M,
Buzek
V,
Berthiaume
A.
Quantum secret sharing.
Phys Rev A,
1999, 59: 1829-1834
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum secret sharing&author=Hillery M&author=Buzek V&author=Berthiaume A&publication_year=1999&journal=Phys Rev A&volume=59&pages=1829-1834
[16]
Karlsson
A,
Koashi
M,
Imoto
N.
Quantum entanglement for secret sharing and secret splitting.
Phys Rev A,
1999, 59: 162-168
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum entanglement for secret sharing and secret splitting&author=Karlsson A&author=Koashi M&author=Imoto N&publication_year=1999&journal=Phys Rev A&volume=59&pages=162-168
[17]
Guo
G P,
Guo
G C.
Quantum secret sharing without entanglement.
Phys Lett A,
2003, 310: 247-251
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum secret sharing without entanglement&author=Guo G P&author=Guo G C&publication_year=2003&journal=Phys Lett A&volume=310&pages=247-251
[18]
Xiao
L,
Long
G L,
Deng
F G, et al.
Efficient multiparty quantum-secret-sharing schemes.
Phys Rev A,
2004, 69: 052307
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient multiparty quantum-secret-sharing schemes&author=Xiao L&author=Long G L&author=Deng F G&publication_year=2004&journal=Phys Rev A&volume=69&pages=052307
[19]
Gea-Banacloche
J.
Hiding messages in quantum data.
J Math Phys,
2002, 43: 4531-4536
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hiding messages in quantum data&author=Gea-Banacloche J&publication_year=2002&journal=J Math Phys&volume=43&pages=4531-4536
[20]
Worley III G G. Quantum watermarking by frequency of error when observing qubits in dissimilar bases. arXiv: quant-ph/0401041v2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Worley III G G. Quantum watermarking by frequency of error when observing qubits in dissimilar bases. arXiv: quant-ph/0401041v2&
[21]
Martin
K.
Steganographic communication with quantum information. In: The Proceedings of the 2007 Workshop on Information Hiding. Lecture Notes on Computer Science.
Berlin:
Springer.
2007, : 32-49
Google Scholar
http://scholar.google.com/scholar_lookup?title=Steganographic communication with quantum information. In: The Proceedings of the 2007 Workshop on Information Hiding. Lecture Notes on Computer Science&author=Martin K&publication_year=2007&pages=32-49
[22]
Liao
X,
Wen
Q Y,
Sun
Y, et al.
Multi-party covert communication with steganography and quantum secret sharing.
J Syst Software,
2010, 83: 1801-1804
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-party covert communication with steganography and quantum secret sharing&author=Liao X&author=Wen Q Y&author=Sun Y&publication_year=2010&journal=J Syst Software&volume=83&pages=1801-1804
[23]
Qu
Z G,
Chen
X B,
Zhou
X J, et al.
Novel quantum steganography with large payload.
Opt Commun,
2010, 283: 4782-4786
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Novel quantum steganography with large payload&author=Qu Z G&author=Chen X B&author=Zhou X J&publication_year=2010&journal=Opt Commun&volume=283&pages=4782-4786
[24]
Qu
Z G,
Chen
X B,
Luo
M X, et al.
Quantum steganography with large payload based on entanglement swapping of c-type entangled states.
Opt Commun,
2011, 284: 2075-2082
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum steganography with large payload based on entanglement swapping of c-type entangled states&author=Qu Z G&author=Chen X B&author=Luo M X&publication_year=2011&journal=Opt Commun&volume=284&pages=2075-2082
[25]
Ye
T Y,
Jiang
L Z.
Large payload quantum steganography based on cavity quantum electrodynamics.
Chin Phys B,
2013, 22: 040305
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large payload quantum steganography based on cavity quantum electrodynamics&author=Ye T Y&author=Jiang L Z&publication_year=2013&journal=Chin Phys B&volume=22&pages=040305
[26]
Ye
T Y,
Jiang
L Z.
Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states.
Chin Phys B,
2013, 22: 050309
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states&author=Ye T Y&author=Jiang L Z&publication_year=2013&journal=Chin Phys B&volume=22&pages=050309
[27]
Xu
S J,
Chen
X B,
Niu
X X, et al.
High-efficiency quantum steganography based on the tensor product of Bell states.
Sci China-Phys Mech Astron,
2013, 56: 1745-1754
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-efficiency quantum steganography based on the tensor product of Bell states&author=Xu S J&author=Chen X B&author=Niu X X&publication_year=2013&journal=Sci China-Phys Mech Astron&volume=56&pages=1745-1754
[28]
Shaw
B A,
Brun
T A.
Quantum steganography with noisy quantum channels.
Phys Rev A,
2011, 83: 022310
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum steganography with noisy quantum channels&author=Shaw B A&author=Brun T A&publication_year=2011&journal=Phys Rev A&volume=83&pages=022310
[29]
Bennett
C H,
Brassard
G,
Popescu
S, et al.
Purification of noisy entanglement and faithful teleportation via noisy channels.
Phys Rev Lett,
1996, 76: 722-725
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Purification of noisy entanglement and faithful teleportation via noisy channels&author=Bennett C H&author=Brassard G&author=Popescu S&publication_year=1996&journal=Phys Rev Lett&volume=76&pages=722-725
[30]
Pan
J W,
Simon
C,
Brukner
C, et al.
Entanglement purification for quantum communication.
Nature,
2001, 410: 1067-1070
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Entanglement purification for quantum communication&author=Pan J W&author=Simon C&author=Brukner C&publication_year=2001&journal=Nature&volume=410&pages=1067-1070
[31]
Pan
J W,
Simon
C.
Polarization entanglement purification using spatial entanglement.
Phys Rev Lett,
2002, 89: 257901
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polarization entanglement purification using spatial entanglement&author=Pan J W&author=Simon C&publication_year=2002&journal=Phys Rev Lett&volume=89&pages=257901
[32]
Sheng
Y B,
Deng
F G.
Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement.
Phys Rev A,
2010, 81: 032307
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement&author=Sheng Y B&author=Deng F G&publication_year=2010&journal=Phys Rev A&volume=81&pages=032307
[33]
Sheng
Y B,
Deng
F G.
One-step deterministic polarization-entanglement purification using spatial entanglement.
Phys Rev A,
2010, 82: 044305
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=One-step deterministic polarization-entanglement purification using spatial entanglement&author=Sheng Y B&author=Deng F G&publication_year=2010&journal=Phys Rev A&volume=82&pages=044305
[34]
Deng
F G.
One-step error correction for multipartite polarization entanglement.
Phys Rev A,
2011, 83: 062316
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=One-step error correction for multipartite polarization entanglement&author=Deng F G&publication_year=2011&journal=Phys Rev A&volume=83&pages=062316
[35]
Ren
B C,
Du
F F,
Deng
F G.
Hyperentanglement concentration for two-photon four-qubit systems with linear optics.
Phys Rev A,
2013, 88: 012302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyperentanglement concentration for two-photon four-qubit systems with linear optics&author=Ren B C&author=Du F F&author=Deng F G&publication_year=2013&journal=Phys Rev A&volume=88&pages=012302
[36]
Nielsen
M A,
Chuang
I L.
Quantum Computation and Quantum Information.
Cambridge:
Cambridge University Press.
2000,
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum Computation and Quantum Information&author=Nielsen M A&author=Chuang I L&publication_year=2000&
[37]
Li
X H,
Deng
F G,
Zhou
H Y.
Faithful qubit transmission against collective noise without ancillary qubits.
Appl Phys Lett,
2007, 91: 144101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Faithful qubit transmission against collective noise without ancillary qubits&author=Li X H&author=Deng F G&author=Zhou H Y&publication_year=2007&journal=Appl Phys Lett&volume=91&pages=144101
[38]
Walton
Z D,
Abouraddy
A F,
Sergienko
A V, et al.
Decoherence-free subspaces in quantum key distribution.
Phys Rev Lett,
2003, 91: 087901
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Decoherence-free subspaces in quantum key distribution&author=Walton Z D&author=Abouraddy A F&author=Sergienko A V&publication_year=2003&journal=Phys Rev Lett&volume=91&pages=087901
[39]
Boileau
J C,
Gottesman
D,
Laflamme
R, et al.
Robust polarization-based quantum key distribution over a collective-noise channel.
Phys Rev Lett,
2004, 92: 017901
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust polarization-based quantum key distribution over a collective-noise channel&author=Boileau J C&author=Gottesman D&author=Laflamme R&publication_year=2004&journal=Phys Rev Lett&volume=92&pages=017901
[40]
Zhang
Z J.
Robust multiparty quantum secret key sharing over two collective-noise channels.
Physica A,
2006, 361: 233-238
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust multiparty quantum secret key sharing over two collective-noise channels&author=Zhang Z J&publication_year=2006&journal=Physica A&volume=361&pages=233-238
[41]
Li
X H,
Deng
F G,
Zhou
H Y.
Efficient quantum key distribution over a collective noise channel.
Phys Rev A,
2008, 78: 022321
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient quantum key distribution over a collective noise channel&author=Li X H&author=Deng F G&author=Zhou H Y&publication_year=2008&journal=Phys Rev A&volume=78&pages=022321
[42]
Li
X H,
Zhao
B K,
Sheng
Y B, et al.
Fault tolerant quantum key distribution based on quantum dense coding with collective noise.
Int J Quant Inform,
2009, 7: 1479-1489
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fault tolerant quantum key distribution based on quantum dense coding with collective noise&author=Li X H&author=Zhao B K&author=Sheng Y B&publication_year=2009&journal=Int J Quant Inform&volume=7&pages=1479-1489
[43]
Gu
B,
Pei
S X,
Song
B, et al.
Deterministic secure quantum communication over a collective-noise channel.
Sci China Ser G-Phys Mech Astron,
2009, 52: 1913-1918
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deterministic secure quantum communication over a collective-noise channel&author=Gu B&author=Pei S X&author=Song B&publication_year=2009&journal=Sci China Ser G-Phys Mech Astron&volume=52&pages=1913-1918
[44]
Gu
B,
Mu
L L,
Ding
L G, et al.
Fault tolerant three-party quantum secret sharing against collective noise.
Opt Commun,
2010, 283: 3099-3103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fault tolerant three-party quantum secret sharing against collective noise&author=Gu B&author=Mu L L&author=Ding L G&publication_year=2010&journal=Opt Commun&volume=283&pages=3099-3103
[45]
Yang
C W,
Tsai
C W,
Hwang
T.
Fault tolerant two-step quantum secure direct communication protocol against collective noises.
Sci China- Phys Mech Astron,
2011, 54: 496-501
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fault tolerant two-step quantum secure direct communication protocol against collective noises&author=Yang C W&author=Tsai C W&author=Hwang T&publication_year=2011&journal=Sci China- Phys Mech Astron&volume=54&pages=496-501
[46]
Gu
B,
Zhang
C Y,
Cheng
G S, et al.
Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel.
Sci China-Phys Mech Astron,
2011, 54: 942-947
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel&author=Gu B&author=Zhang C Y&author=Cheng G S&publication_year=2011&journal=Sci China-Phys Mech Astron&volume=54&pages=942-947
[47]
Yang
C W,
Hwang
T.
Quantum dialogue protocols immune to collective noise.
Quantum Inf Process,
2013, 12: 2131-2142
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum dialogue protocols immune to collective noise&author=Yang C W&author=Hwang T&publication_year=2013&journal=Quantum Inf Process&volume=12&pages=2131-2142
[48]
Lin
J,
Hwang
T.
Bell state entanglement swappings over collective noises and their applications on quantum cryptography.
Quantum Inf Process,
2013, 12: 1089-1107
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bell state entanglement swappings over collective noises and their applications on quantum cryptography&author=Lin J&author=Hwang T&publication_year=2013&journal=Quantum Inf Process&volume=12&pages=1089-1107
[49]
Ye
T Y.
Information leakage resistant quantum dialogue against collective noise.
Sci China-Phys Mech Astron,
2014, 57(12): 2266-2275
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information leakage resistant quantum dialogue against collective noise&author=Ye T Y&publication_year=2014&journal=Sci China-Phys Mech Astron&volume=57&issue=12&pages=2266-2275
[50]
Li
C Y,
Zhou
H Y,
Wang
Y, et al.
Secure quantum key distribution network with Bell states and local unitary operations.
Chin Phys Lett,
2005, 22: 1049-1052
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Secure quantum key distribution network with Bell states and local unitary operations&author=Li C Y&author=Zhou H Y&author=Wang Y&publication_year=2005&journal=Chin Phys Lett&volume=22&pages=1049-1052
[51]
Li
C Y,
Li
X H,
Deng
F G, et al.
Efficient quantum cryptography network without entanglement and quantum memory.
Chin Phys Lett,
2006, 23: 2896-2899
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient quantum cryptography network without entanglement and quantum memory&author=Li C Y&author=Li X H&author=Deng F G&publication_year=2006&journal=Chin Phys Lett&volume=23&pages=2896-2899
[52]
Shannon
C E.
Communication theory of secrecy system.
Bell Syst Tech J,
1949, 28: 656-715
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Communication theory of secrecy system&author=Shannon C E&publication_year=1949&journal=Bell Syst Tech J&volume=28&pages=656-715
[53]
Cai
Q Y.
Eavesdropping on the two-way quantum communication protocols with invisible photons.
Phys Lett A,
2006, 351: 23-25
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Eavesdropping on the two-way quantum communication protocols with invisible photons&author=Cai Q Y&publication_year=2006&journal=Phys Lett A&volume=351&pages=23-25
[54]
Li
X H,
Deng
F G,
Zhou
H Y.
Improving the security of secure direct communication based on the secret transmitting order of particles.
Phys Rev A,
2006, 74: 054302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improving the security of secure direct communication based on the secret transmitting order of particles&author=Li X H&author=Deng F G&author=Zhou H Y&publication_year=2006&journal=Phys Rev A&volume=74&pages=054302
[55]
Gisin
N,
Ribordy
G,
Tittel
W, et al.
Quantum cryptography.
Rev Mod Phys,
2002, 74: 145-195
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum cryptography&author=Gisin N&author=Ribordy G&author=Tittel W&publication_year=2002&journal=Rev Mod Phys&volume=74&pages=145-195
[56]
Lin
S,
Wen
Q Y,
Gao
F, et al.
Quantum secure direct communication with χ-type entangled states.
Phys Rev A,
2008, 78: 064304
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum secure direct communication with χ-type entangled states&author=Lin S&author=Wen Q Y&author=Gao F&publication_year=2008&journal=Phys Rev A&volume=78&pages=064304