Fault tolerant quantum steganography over collective noise channels

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 1: 010301(2015) https://doi.org/10.1360/SSPMA2014-00303

Fault tolerant quantum steganography over collective noise channels

More info
  • ReceivedAug 11, 2014
  • AcceptedSep 22, 2014
  • PublishedJan 4, 2015
PACS numbers

Abstract

本文提出两个集体噪声信道上错误容忍量子隐写(Quantum Steganography, QS)协议. 一个是抗集体退相位噪声的, 另一个是抗集体旋转噪声的. 逻辑Bell态(即4量子比特DF态)被用于克服这两类集体噪声. 构建在常规量子安全直接通信(Quantum Secure Direct Communication, QSDC)信道的用于传递秘密消息的量子隐秘信道是通过对2个逻辑Bell态交换纠缠来建立. Bell态测量而非4量子比特联合测量被用于解码. 而且, 信道容量高达4比特每轮隐秘通信. 另外, 协议的不可见性和安全性都能得到保证.


Funded by

国家自然科学基金资助项目(61402407)


References

[1] Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: The Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press. 1984, : 175-179 Google Scholar

[2] Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell theorem. Phys Rev Lett, 1992, 68: 557-559 CrossRef Google Scholar

[3] Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett, 2000, 85: 5635-5638 CrossRef Google Scholar

[4] Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315 CrossRef Google Scholar

[5] Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311 CrossRef Google Scholar

[6] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302 CrossRef Google Scholar

[7] Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902 CrossRef Google Scholar

[8] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317 CrossRef Google Scholar

[9] Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319 CrossRef Google Scholar

[10] Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305 CrossRef Google Scholar

[11] Wang T J, Li T, Du F F, et al. High-capacity quantum secure direct communication based on quantum hyperdense coding with Hyperentanglement. Chin Phys Lett, 2011, 28: 040305 CrossRef Google Scholar

[12] Sun Z W, Du R G, Long D Y. Quantum secure direct communication with two-photon four-qubit cluster states. Int J Theor Phys, 2012, 51: 1946-1952 CrossRef Google Scholar

[13] Liu D, Chen J L, Jiang W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int J Theor Phys, 2012, 51: 2923-2929 CrossRef Google Scholar

[14] Ren B C, Wei H R, Hua M, et al. Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur Phys J D, 2013, 67: 30-37 CrossRef Google Scholar

[15] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829-1834 CrossRef Google Scholar

[16] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162-168 CrossRef Google Scholar

[17] Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247-251 CrossRef Google Scholar

[18] Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307 CrossRef Google Scholar

[19] Gea-Banacloche J. Hiding messages in quantum data. J Math Phys, 2002, 43: 4531-4536 CrossRef Google Scholar

[20] Worley III G G. Quantum watermarking by frequency of error when observing qubits in dissimilar bases. arXiv: quant-ph/0401041v2. Google Scholar

[21] Martin K. Steganographic communication with quantum information. In: The Proceedings of the 2007 Workshop on Information Hiding. Lecture Notes on Computer Science. Berlin: Springer. 2007, : 32-49 Google Scholar

[22] Liao X, Wen Q Y, Sun Y, et al. Multi-party covert communication with steganography and quantum secret sharing. J Syst Software, 2010, 83: 1801-1804 CrossRef Google Scholar

[23] Qu Z G, Chen X B, Zhou X J, et al. Novel quantum steganography with large payload. Opt Commun, 2010, 283: 4782-4786 CrossRef Google Scholar

[24] Qu Z G, Chen X B, Luo M X, et al. Quantum steganography with large payload based on entanglement swapping of c-type entangled states. Opt Commun, 2011, 284: 2075-2082 CrossRef Google Scholar

[25] Ye T Y, Jiang L Z. Large payload quantum steganography based on cavity quantum electrodynamics. Chin Phys B, 2013, 22: 040305 CrossRef Google Scholar

[26] Ye T Y, Jiang L Z. Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states. Chin Phys B, 2013, 22: 050309 CrossRef Google Scholar

[27] Xu S J, Chen X B, Niu X X, et al. High-efficiency quantum steganography based on the tensor product of Bell states. Sci China-Phys Mech Astron, 2013, 56: 1745-1754 CrossRef Google Scholar

[28] Shaw B A, Brun T A. Quantum steganography with noisy quantum channels. Phys Rev A, 2011, 83: 022310 CrossRef Google Scholar

[29] Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722-725 CrossRef Google Scholar

[30] Pan J W, Simon C, Brukner C, et al. Entanglement purification for quantum communication. Nature, 2001, 410: 1067-1070 CrossRef Google Scholar

[31] Pan J W, Simon C. Polarization entanglement purification using spatial entanglement. Phys Rev Lett, 2002, 89: 257901 CrossRef Google Scholar

[32] Sheng Y B, Deng F G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys Rev A, 2010, 81: 032307 CrossRef Google Scholar

[33] Sheng Y B, Deng F G. One-step deterministic polarization-entanglement purification using spatial entanglement. Phys Rev A, 2010, 82: 044305 CrossRef Google Scholar

[34] Deng F G. One-step error correction for multipartite polarization entanglement. Phys Rev A, 2011, 83: 062316 CrossRef Google Scholar

[35] Ren B C, Du F F, Deng F G. Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys Rev A, 2013, 88: 012302 CrossRef Google Scholar

[36] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. 2000, Google Scholar

[37] Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits. Appl Phys Lett, 2007, 91: 144101 CrossRef Google Scholar

[38] Walton Z D, Abouraddy A F, Sergienko A V, et al. Decoherence-free subspaces in quantum key distribution. Phys Rev Lett, 2003, 91: 087901 CrossRef Google Scholar

[39] Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel. Phys Rev Lett, 2004, 92: 017901 CrossRef Google Scholar

[40] Zhang Z J. Robust multiparty quantum secret key sharing over two collective-noise channels. Physica A, 2006, 361: 233-238 CrossRef Google Scholar

[41] Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321 CrossRef Google Scholar

[42] Li X H, Zhao B K, Sheng Y B, et al. Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int J Quant Inform, 2009, 7: 1479-1489 CrossRef Google Scholar

[43] Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1913-1918 CrossRef Google Scholar

[44] Gu B, Mu L L, Ding L G, et al. Fault tolerant three-party quantum secret sharing against collective noise. Opt Commun, 2010, 283: 3099-3103 CrossRef Google Scholar

[45] Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China- Phys Mech Astron, 2011, 54: 496-501 CrossRef Google Scholar

[46] Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54: 942-947 CrossRef Google Scholar

[47] Yang C W, Hwang T. Quantum dialogue protocols immune to collective noise. Quantum Inf Process, 2013, 12: 2131-2142 CrossRef Google Scholar

[48] Lin J, Hwang T. Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf Process, 2013, 12: 1089-1107 CrossRef Google Scholar

[49] Ye T Y. Information leakage resistant quantum dialogue against collective noise. Sci China-Phys Mech Astron, 2014, 57(12): 2266-2275 CrossRef Google Scholar

[50] Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett, 2005, 22: 1049-1052 CrossRef Google Scholar

[51] Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett, 2006, 23: 2896-2899 CrossRef Google Scholar

[52] Shannon C E. Communication theory of secrecy system. Bell Syst Tech J, 1949, 28: 656-715 CrossRef Google Scholar

[53] Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23-25 CrossRef Google Scholar

[54] Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302 CrossRef Google Scholar

[55] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145-195 CrossRef Google Scholar

[56] Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with χ-type entangled states. Phys Rev A, 2008, 78: 064304 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1