Investigation of the GaN-based light-emitting diodes with engineered energy band in InGaN multiple quantum wells

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 6: 067305(2015) https://doi.org/10.1360/SSPMA2015-00045

Investigation of the GaN-based light-emitting diodes with engineered energy band in InGaN multiple quantum wells

More info
  • ReceivedJan 26, 2015
  • AcceptedMar 31, 2015
  • PublishedApr 29, 2015
PACS numbers

Abstract

InGaN/GaN多量子阱中由于存在极化效应导致能带弯曲, 并由此导致电子和空穴在空间上被分离, 因此严重降低了GaN基LED的发光效率. 针对此问题, 我们设计了一种组分渐变的量子阱结构, 利用组分与能带的关系对量子阱进行能带调控, 使得量子阱中的能带弯曲减弱. 该方法有效增加了LED的光功率和外量子效率. 电致发光谱测试显示, 在注入电流为35 A/cm2时, 具有能带调控量子阱的LED其外量子效率比传统结构的LED提高了10.6%, 发光功率提高了9.8%. 能带模拟显示, 能带调控后的量子阱中能带倾斜现象减弱, 且空穴浓度明显增加, 因此电子空穴波函数在空间中的重叠面积得到有效提高, 最终提高了辐射复合效率.


Funded by

国家自然基金委自然基金项目(61306008)


References

[1] Park S H, Ahn D, Koo B H, et al. Dip-shaped InGaN/GaN quantum-well light-emitting diodes with high efficiency. Appl Phys Lett, 2009, 95: 063507 CrossRef Google Scholar

[2] Waltereit P, Brandt O, Trampert A, et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature, 2000, 406: 865-868 CrossRef Google Scholar

[3] Wei T B, Zhang L, Ji X L, et al. Investigation of efficiency and droop behavior comparison for InGaN GaN super wide-well light emitting diodes grown on different substrates. IEEE Photon J, 2014, 6: 8200610 Google Scholar

[4] Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett, 2007, 91: 183507 CrossRef Google Scholar

[5] Dadgar A, Groh L, Metzner S, et al. Green to blue polarization compensated c-axis oriented multi-quantum wells by AlGaInN barrier layers. Appl Phys Lett, 2013, 102: 062110 CrossRef Google Scholar

[6] Yang Z, Li R, Wei Q, et al. Analysis of optical gain property in the InGaN/GaN triangular shaped quantum well under the piezoelectric field. Appl Phys Lett, 2009, 94: 061120 CrossRef Google Scholar

[7] Zhao Y, Tanaka S, Pan C C, et al. High-power blue-violet semipolar (2021) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm2. Appl Phys Express, 2011, 4: 082104 CrossRef Google Scholar

[8] Ling S C, Lu T C, Chang S P, et al. Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes. Appl Phys Lett, 2010, 96: 231101 CrossRef Google Scholar

[9] Zhao H, Liu G, Li X H, et al. Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile. Appl Phys Lett, 2009, 95: 061104 CrossRef Google Scholar

[10] Carnevale S D, Kent T F, Phillips P J, et al. Polarization-Induced pn diodes in Wide-Band-Gap nanowires with ultraviolet electroluminescence. Nano Lett, 2012, 12: 915-920 CrossRef Google Scholar

[11] Simon J, Wang A, Xing H, et al. Carrier transport and confinement in polarization-induced three-dimensional electron slabs: Importance of alloy scattering in AlGaN. Appl Phys Lett, 2006, 88: 042109 CrossRef Google Scholar

[12] Dong Y, Song J, Kim H, et al. Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates. J Appl Phys, 2011, 109: 043103 CrossRef Google Scholar

[13] Varshni Y P. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34: 149-154 CrossRef Google Scholar

[14] Feneberg M, Lipski F, Sauer R, et al. Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets. Appl Phys Lett, 2006, 89: 242112 CrossRef Google Scholar

[15] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Appl Phys Lett, 2002, 80: 1204 CrossRef Google Scholar

[16] Piprek J. Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping. Opt Quant Electron, 2012, 44: 67-73 CrossRef Google Scholar

[17] Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327: 60-64 CrossRef Google Scholar

  • 图1

    具有能带调控量子阱的GaN/InGaN多量子阱发光二极管结构示意图

  • 图2

    (网络版彩图)具有能带调控量子阱的LED与传统结构的LED光电性能比较. (a) 两种LED样品的IV曲线. 插图: 模拟得到的LED IV曲线; (b) 光输出功率和外量子效率与注入电流的关系曲线; (c) EL发光峰的峰值能量随注入电流的变化曲线

  • 图3

    (网络版彩图)传统结构的LED (a)和具有能带调控量子阱的LED (b)的PL发光峰的光子能量与反向偏压的关系曲线. 插图为两种结构的LED样品在不同反向偏压下的PL 发光谱

  • 图4

    (网络版彩图)传统结构的LED和具有能带调控量子阱的LED的理论模拟结果. (a) 注入电流为35 A/cm2时, 两种LED样品的量子阱能带图. 插图: 局部能带放大图; (b) 传统结构的LED和具有能带调控量子阱的LED量子阱中空穴浓度对比图

  • 图5

    (网络版彩图)计算得到的传统结构的LED和具有能带调控量子阱的LED的模拟结果. (a) 传统结构LED最靠近p型层的量子阱中的电子和空穴波函数; (b) 具有能带调控量子阱的LED最靠近p型层的量子阱中的电子和空穴波函数; (c) 在注入电流为35 A/cm2时, 传统结构的量子阱中和能带调控后的量子阱中的辐射复合效率

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1