MBE growth of entire-indium-composition-tunable In

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 6: 067301(2015) https://doi.org/10.1360/SSPMA2015-00114

MBE growth of entire-indium-composition-tunable In

More info
  • ReceivedMar 26, 2015
  • AcceptedApr 16, 2015
  • PublishedApr 29, 2015
PACS numbers

Abstract

III族氮化物 InxGa1-xN合金为直接带隙半导体, 其禁带宽度随着In组分变化从3.43 eV(GaN)到0.64 eV(InN)连续可调, 波长范围覆盖了0.3–1.9 μm, 具有电子饱和速度高和光学吸收系数大等特点, 是制备高效率全光谱太阳能电池和白光照明器件的理想材料. 由于缺少合适的衬底, InN和InxGa1-xN薄膜通常生长在蓝宝石或 GaN模板上. 本论文综述了采用MBE方法, 在蓝宝石衬底和GaN模板上生长了InN 和全组分InxGa1-xN薄膜的生长行为和材料物理性质. 利用MBE边界温度控制法在蓝宝石衬底上生长高室温电子迁移率的InN薄膜, 利用温度控制外延法在GaN/蓝宝石模板上制备了全组分InxGa1-xN薄膜.


Funded by

国家自然科学基金资助项目(61225019)

国家高技术研究发展计划(2011AA050514)


References

[1] Wu J, Walukiewicz W. Band gaps of InN and group III nitride alloys. Superlattices Microstruct, 2003, 34: 63-75 CrossRef Google Scholar

[2] Davydov V Y, Klochikhin A A, Seisyan R P, et al. Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap. Phys Stat Sol B22, 2002, 3: R1-R3 Google Scholar

[3] Mccray W P. MBE deserves a place in the history books. Nat Nanotechnol, 2007, 2: 259-261 CrossRef Google Scholar

[4] Wang X Q, Yoshikawa A. Molecular beam epitaxy growth of GaN, AlN and InN. Prog Cryst Growth Charact Mater, 2004, 48: 42-103 Google Scholar

[5] Wang X Q, Yoshikawa A. Polarity-dependent epitaxy control of InN, InGaN and InAlN. In: Indium Nitride and Related Alloys. CRC Press: 2009: 83–137, Google Scholar

[6] Huang D, Reshchikov M A, Visconti P, et al. Comparative study of Ga- and N-polar GaN films grown on sapphire substrates by molecular beam epitaxy. J Vac Sci Technol B, 2002, 20: 2256-2264 CrossRef Google Scholar

[7] Chen X W, Jia C H, Chen Y H, et al. Epitaxial growth and optical properties of Al- and N-polar AlN films by laser molecular beam epitaxy. J Phys D-Appl Phys, 2014, 47: 125303 CrossRef Google Scholar

[8] Wang X Q, Che S B, Ishitani Y, et al. Effect of epitaxial temperature on N-polar InN films grown by molecular beam epitaxy. J Appl Phys, 2006, 99: 073512 CrossRef Google Scholar

[9] Calleja E, Risti? J, Fernández-Garrido S, et al. Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Phys Stat Sol(b), 2007, 244: 2816-2837 CrossRef Google Scholar

[10] Wang X Q, Che S B, Ishitani Y, et al. Step-flow growth of In-Polar InN by molecular beam epitaxy. Jpn J Appl Phys Part 2 Lett, 2006, 45: L730-L733 CrossRef Google Scholar

[11] Wang X Q, Liu S T, Chen G, et al. High electron mobility InN layers grown by boundary-temperature-controlled epitaxy. Appl Phys Express, 2012, 5: 015502 CrossRef Google Scholar

[12] Miller N, Haller E E, Koblmuller G, et al. Effect of charged dislocation scattering on electrical and electrothermal transport in n-type InN. Phys Rev B, 2011, 84: 075315 CrossRef Google Scholar

[13] Yim J W L, Jones R E, Yu K M, et al. Effects of surface states on electrical characteristics of InN and InGaN. Phys Rev B, 2007, 76: 041303 Google Scholar

[14] Wu J, Walukiewicz W, Shan W, et al. Temperature dependence of the fundamental band gap of InN. J Appl Phys, 2003, 94: 4457-4460 CrossRef Google Scholar

[15] Piper L F J, Veal T D, McConville C F, et al. Origin of the n-type conductivity of InN: The role of positively charged dislocations. Appl Phys Lett, 2006, 88: 252109 CrossRef Google Scholar

[16] Wu J. When group-III nitrides go infrared: New properties and perspectives. J Appl Phys, 2009, 106: 011101 CrossRef Google Scholar

[17] Bedair S M, McIntosh F G, Roberts J C, et al. Growth and characterization of In-based nitride compounds. J Cryst Growth, 1997, 178: 32-44 CrossRef Google Scholar

[18] Matsuoka T, Yoshimoto N, Sakaki T, et al. Wide-gap semiconductor indium gallium nitride and indium gallium aluminum nitride grown by MOVPE. Electron Mat, 1992, 21: 157-163 CrossRef Google Scholar

[19] Nakamura S. Growth of InxGa1?xN compound semiconductors and high-power InGaN/AlGaN double heterostructure violet-light-emitting diodes. Microelectron J, 1994, 25: 651-659 CrossRef Google Scholar

[20] Liu S L, Wang X Q, Chen G, et al. Temperature-controlled epitaxy of InxGa1?xN alloys and their band gap bowing. J Appl Phys, 2011, 110: 113514 CrossRef Google Scholar

[21] Pantha B N, Li J, Lin J Y, et al. Single phase InxGa1?xN (0. 25≤x≤0. 63) alloys synthesized by metal organic chemical vapor deposition. Appl Phys Lett, 2008, 93: 182107 CrossRef Google Scholar

[22] Naoi H, Kurouchi M, Muto D, et al. Growth of high-quality In-rich InGaN alloys by RF-MBE for the fabrication of InN-based quantum well structures. J Cryst Growth, 2006, 288: 283-288 CrossRef Google Scholar

[23] Wu J, Walukiewicz W, Yu K M, et al. Small band gap bowing in InxGa1?xN alloys. Appl Phys Lett, 2002, 80: 4741 CrossRef Google Scholar

[24] Schley P, Goldhahn R, Winzer A T, et al. Dielectric function and Van Hove singularities for In-rich InxGa1?xN alloys: Comparison of N- and metal-face materials. Phys Rev B, 2007, 75: 205204 CrossRef Google Scholar

[25] Hori M, Kano K, Yamaguchi T, et al. Optical properties of InxGa1?xN with entire alloy composition on inn buffer layer grown by RF-MBE. Phys Status Solidi B, 2002, 234: 750-754 CrossRef Google Scholar

[26] McCluskey M D, Van de Walle C G, Romano L T, et al. Effect of composition on the band gap of strained InxGa1-xN alloys. J Appl Phys, 2003, 93: 4340-4342 CrossRef Google Scholar

[27] Hsu L, Jones R E, Li S X, et al. Electron mobility in InN and III-N alloys. J Appl Phys, 2007, 102: 073705 CrossRef Google Scholar

[28] Pantha B N, Sedhain A, Li J, et al. Electrical and optical properties of p-type InGaN. Appl Phys Lett, 2009, 95: 261904 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1