III族氮化物 In
国家自然科学基金资助项目(61225019)
国家高技术研究发展计划(2011AA050514)
[1] Wu J, Walukiewicz W. Band gaps of InN and group III nitride alloys. Superlattices Microstruct, 2003, 34: 63-75 CrossRef Google Scholar
[2] Davydov V Y, Klochikhin A A, Seisyan R P, et al. Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap. Phys Stat Sol B22, 2002, 3: R1-R3 Google Scholar
[3] Mccray W P. MBE deserves a place in the history books. Nat Nanotechnol, 2007, 2: 259-261 CrossRef Google Scholar
[4] Wang X Q, Yoshikawa A. Molecular beam epitaxy growth of GaN, AlN and InN. Prog Cryst Growth Charact Mater, 2004, 48: 42-103 Google Scholar
[5] Wang X Q, Yoshikawa A. Polarity-dependent epitaxy control of InN, InGaN and InAlN. In: Indium Nitride and Related Alloys. CRC Press: 2009: 83–137, Google Scholar
[6] Huang D, Reshchikov M A, Visconti P, et al. Comparative study of Ga- and N-polar GaN films grown on sapphire substrates by molecular beam epitaxy. J Vac Sci Technol B, 2002, 20: 2256-2264 CrossRef Google Scholar
[7] Chen X W, Jia C H, Chen Y H, et al. Epitaxial growth and optical properties of Al- and N-polar AlN films by laser molecular beam epitaxy. J Phys D-Appl Phys, 2014, 47: 125303 CrossRef Google Scholar
[8] Wang X Q, Che S B, Ishitani Y, et al. Effect of epitaxial temperature on N-polar InN films grown by molecular beam epitaxy. J Appl Phys, 2006, 99: 073512 CrossRef Google Scholar
[9] Calleja E, Risti? J, Fernández-Garrido S, et al. Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Phys Stat Sol(b), 2007, 244: 2816-2837 CrossRef Google Scholar
[10] Wang X Q, Che S B, Ishitani Y, et al. Step-flow growth of In-Polar InN by molecular beam epitaxy. Jpn J Appl Phys Part 2 Lett, 2006, 45: L730-L733 CrossRef Google Scholar
[11] Wang X Q, Liu S T, Chen G, et al. High electron mobility InN layers grown by boundary-temperature-controlled epitaxy. Appl Phys Express, 2012, 5: 015502 CrossRef Google Scholar
[12] Miller N, Haller E E, Koblmuller G, et al. Effect of charged dislocation scattering on electrical and electrothermal transport in n-type InN. Phys Rev B, 2011, 84: 075315 CrossRef Google Scholar
[13] Yim J W L, Jones R E, Yu K M, et al. Effects of surface states on electrical characteristics of InN and InGaN. Phys Rev B, 2007, 76: 041303 Google Scholar
[14] Wu J, Walukiewicz W, Shan W, et al. Temperature dependence of the fundamental band gap of InN. J Appl Phys, 2003, 94: 4457-4460 CrossRef Google Scholar
[15] Piper L F J, Veal T D, McConville C F, et al. Origin of the n-type conductivity of InN: The role of positively charged dislocations. Appl Phys Lett, 2006, 88: 252109 CrossRef Google Scholar
[16] Wu J. When group-III nitrides go infrared: New properties and perspectives. J Appl Phys, 2009, 106: 011101 CrossRef Google Scholar
[17] Bedair S M, McIntosh F G, Roberts J C, et al. Growth and characterization of In-based nitride compounds. J Cryst Growth, 1997, 178: 32-44 CrossRef Google Scholar
[18] Matsuoka T, Yoshimoto N, Sakaki T, et al. Wide-gap semiconductor indium gallium nitride and indium gallium aluminum nitride grown by MOVPE. Electron Mat, 1992, 21: 157-163 CrossRef Google Scholar
[19] Nakamura S. Growth of InxGa1?xN compound semiconductors and high-power InGaN/AlGaN double heterostructure violet-light-emitting diodes. Microelectron J, 1994, 25: 651-659 CrossRef Google Scholar
[20] Liu S L, Wang X Q, Chen G, et al. Temperature-controlled epitaxy of InxGa1?xN alloys and their band gap bowing. J Appl Phys, 2011, 110: 113514 CrossRef Google Scholar
[21] Pantha B N, Li J, Lin J Y, et al. Single phase InxGa1?xN (0. 25≤x≤0. 63) alloys synthesized by metal organic chemical vapor deposition. Appl Phys Lett, 2008, 93: 182107 CrossRef Google Scholar
[22] Naoi H, Kurouchi M, Muto D, et al. Growth of high-quality In-rich InGaN alloys by RF-MBE for the fabrication of InN-based quantum well structures. J Cryst Growth, 2006, 288: 283-288 CrossRef Google Scholar
[23] Wu J, Walukiewicz W, Yu K M, et al. Small band gap bowing in InxGa1?xN alloys. Appl Phys Lett, 2002, 80: 4741 CrossRef Google Scholar
[24] Schley P, Goldhahn R, Winzer A T, et al. Dielectric function and Van Hove singularities for In-rich InxGa1?xN alloys: Comparison of N- and metal-face materials. Phys Rev B, 2007, 75: 205204 CrossRef Google Scholar
[25] Hori M, Kano K, Yamaguchi T, et al. Optical properties of InxGa1?xN with entire alloy composition on inn buffer layer grown by RF-MBE. Phys Status Solidi B, 2002, 234: 750-754 CrossRef Google Scholar
[26] McCluskey M D, Van de Walle C G, Romano L T, et al. Effect of composition on the band gap of strained InxGa1-xN alloys. J Appl Phys, 2003, 93: 4340-4342 CrossRef Google Scholar
[27] Hsu L, Jones R E, Li S X, et al. Electron mobility in InN and III-N alloys. J Appl Phys, 2007, 102: 073705 CrossRef Google Scholar
[28] Pantha B N, Sedhain A, Li J, et al. Electrical and optical properties of p-type InGaN. Appl Phys Lett, 2009, 95: 261904 CrossRef Google Scholar
图1
(网络版彩图)
图2
(网络版彩图)纤锌矿结构InN不同晶格极性的示意图
图3
(网络版彩图)In和N极性InN生长前沿
图4
(网络版彩图)原位椭偏仪测试的介电常数随In原子束流变化示意图, 由介电常数的变化可以把InN的生长分为两个区域, 富In区域和富N区域. 其中圆点表示的是归一的介电常数值, 方块表示的是同样厚度在位检测的介电常数值
图5
(网络版彩图)不同生长温度下In极性InN的表面形貌AFM图, 扫描范围分别为10
图6
(网络版彩图)不同生长温度下N极性InN外延膜的表面形貌, 扫描范围分别为10
图7
(网络版彩图)InN生长速度随温度变化关系. 插图为边界温度控制外延法示意图, 随着生长的进行, 将热偶温度从500°C逐步降低到480°C
图8
(网络版彩图)InN薄膜(002)和(102)面摇摆曲线FWHMs随厚度的变化关系
图9
(网络版彩图) 5
图10
(网络版彩图)(a) 室温下InN薄膜背景电子浓度和迁移率随厚度的变化关系. (b) InN薄膜背景电子浓度和迁移率随温度变化关系. 实心方块为直接测量值, 实心三角为导出的InN体材料的迁移率. 利用EMC计算出来的迁移率同温度的依赖关系如实线所示. 插图中实线为计算得到的电子浓度同温度的依赖关系
图11
InN薄膜室温下的PL谱
图12
(网络版彩图)In吸附原子在In
图13
(网络版彩图)In
图14
(网络版彩图)In
图15
(网络版彩图)In
图16
(网络版彩图)In
图17
(网络版彩图)In
图18
(网络版彩图)In
图19
(网络版彩图)根据光学吸收边确定的In
图20
(网络版彩图)室温下In
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1