经过近十年的探索, 作者在国际上率先突破了硅衬底高光效GaN基蓝光LED材料生长技术及其薄膜型芯片制造技术, 制备了内量子效率和取光效率均高达80%的单面出光垂直结构GaN基蓝光LED, 并实现了产业化和商品化, 成功地应用于路灯、球炮灯、矿灯、筒灯、手电和显示显像等领域. 本文就相关关键技术进行全面系统地介绍. 发明了选区生长、无掩模微侧向外延等技术, 仅用100 nm厚的单一高温AlN作缓冲层, 制备了无裂纹、厚度大于3 μm的器件级GaN基LED薄膜材料, 位错密度为5×108 cm-2. 发明了自成体系的适合硅衬底GaN基薄膜型LED芯片制造的工艺技术, 包括高反射率低接触电阻p型欧姆接触电极、高稳定性低接触电阻n型欧姆接触电极、表面粗化、互补电极、GaN薄膜应力释放等技术, 获得了高光效、高可靠性的硅基LED, 蓝光LED(450 nm)在350 mA(35 A/cm2)下, 光输出功率达657 mW, 外量子效率为68.1%.
国家科技支撑计划(2011BAE32B01)
国家自然科学基金(61334001)
电子发展基金
国家高技术研究发展计划(2011AA03A101)
[1] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 1986, 48: 353-355 CrossRef Google Scholar
[2] Amano H, Kito M, Hiramatsu K, et al. P-type conduction in mg-doped GaN treated with low-energy electron beam irradiation. Jpn J Appl Phys, 1989, 28: L2112-L2114 CrossRef Google Scholar
[3] Nakamura S. GaN growth using GaN Buffer Layer. Jpn J Appl Phys, 1991, 30: L1705-L1707 CrossRef Google Scholar
[4] Nakamura S, Iwasa N, Senoh M, et al. Hole compensation mechanism of P-Type GaN films. Jpn J Appl Phys, 1992, 31: 1258-1266 CrossRef Google Scholar
[5] Pankove J, Miller E, Berkeyheiser J. GaN blue light-emitting diodes. J Lumin, 1972, 5: 84-86 CrossRef Google Scholar
[6] 6 Braslau N, Cuomo J, Harris P, et al. Planar GaN electroluminescent device. 美国专利, 1973, US 3849707. Google Scholar
[7] Butter E, Fitzl G, Hirsch D, et al. The deposition of group III nitrides on silicon substrates. Thin Solid Films, 1979, 59: 25-31 CrossRef Google Scholar
[8] Takeuchi T, Amano H, Hiramatsu K, et al. Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. J Cryst Growth, 1991, 115: 634-638 CrossRef Google Scholar
[9] Watanabe A, Takeuchi T, Hirosawa K, et al. The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer. J Cryst Growth, 1993, 128: 391-396 CrossRef Google Scholar
[10] Yang J, Sun C, Chen Q, et al. High quality GaN-InGaN heterostructures grown on (111) silicon substrates. Appl Phys Lett, 1996, 69: 3566-3568 CrossRef Google Scholar
[11] Kobayashi N, Kobayashi J, Dapkus P, et al. GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer. Appl Phys Lett, 1997, 71: 3569-3571 CrossRef Google Scholar
[12] Wang L, Liu X, Zan Y, et al. Wurtzite GaN epitaxial growth on a Si(001) substrate using γ-Al2O3 as an intermediate layer. Appl Phys Lett, 1998, 72: 109-111 CrossRef Google Scholar
[13] 13 Boo J, Rohr C, Ho W. MOCVD of BN and GaN thin films on silicon: new attempt of GaN growth with BN buffer layer. J Cryst Growth, 1998, 189-190: 439–444. Google Scholar
[14] Guha S, Bojarczuk N. Ultraviolet and violet GaN light emitting diodes on silicon. Appl Phys Lett, 1998, 72: 415-417 CrossRef Google Scholar
[15] Mo C, Fang W, Pu Y, et al. Growth and characterization of InGaN blue LED structure on Si(111) by MOCVD. J Cryst Growth, 2005, 285: 312-317 CrossRef Google Scholar
[16] 16 陈关升. 十年磨一剑-中国LED硅衬底技术取得突破性进展. 中国半导体照明网, 2014. 6.6, http://www.china-led.org/article/20140606/ 7804.shtml. Google Scholar
[17] Krost A, Dadgar A. GaN-based optoelectronics on silicon substrates. Mater Sci Eng B, 2002, 93: 77-84 CrossRef Google Scholar
[18] Dadgar A, Poschenrieder M, Bl?sing J, et al. Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking. Appl Phys Lett, 2002, 80: 3670-3672 CrossRef Google Scholar
[19] Bl?sing J, Reiher A, Dadgar A, et al. The origin of stress reduction by low-temperature AlN interlayers. Appl Phys Lett, 2002, 81: 2722-2724 CrossRef Google Scholar
[20] Kim M, Do Y, Kang H, et al. Effects of step-graded AlxGa1–xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition. Appl Phys Lett, 2001, 79: 2713-2715 CrossRef Google Scholar
[21] Cheng K, Leys M, Degroote S, et al. Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers. J Electron Mater, 2006, 35: 592-598 CrossRef Google Scholar
[22] Dadgar A, Alam A, Riemann T, et al. Crack-free InGaN/GaN light emitters on Si(111). Phys Status Solidi A, 2001, 188: 155-158 CrossRef Google Scholar
[23] Zamir S, Meyler B, Salzman J. Thermal microcrack distribution control in GaN layers on Si substrates by lateral confined epitaxy. Appl Phys Lett, 2001, 78: 288-290 CrossRef Google Scholar
[24] Honda Y, Kuroiwa Y, Kawaguchi M, et al. Growth of GaN free from cracks on a (111)Si substrate by selective metalorganic vapor-phase epitaxy. Appl Phys Lett, 2002, 80: 222-224 CrossRef Google Scholar
[25] Liu J, Feng F, Zhou Y, et al. Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate. Appl Phys Lett, 2011, 99: 111112 CrossRef Google Scholar
[26] Liu J, Zhang J, Mao Q, et al. Effects of AlN interlayer on growth of GaN-based LED on patterned silicon substrate. Cryst Eng Comm, 2013, 15: 3372-3376 CrossRef Google Scholar
[27] Feng F, Liu J, Qiu C, et al. N-polar n-type ohmic contact of GaN-based LED on Si substrate. Acta Phys Sin, 2010, 59: 5706-5709 Google Scholar
[28] Strittmatter A, Krost A, Stra?burg M, et al. Low-pressure metal organic chemical vapor deposition of GaN on silicon(111) substrates using an AlAs nucleation layer. Appl Phys Lett, 1999, 74: 1242-1244 CrossRef Google Scholar
[29] Liu H, Ye Z, Zhang H. Wurtzite GaN epitaxial growth on Si(111) using silicon nitride as an initial layer. Mater Res Bull, 2000, 35: 1837-1842 CrossRef Google Scholar
[30] Armitage R, Yang Q, Feick H, et al. Lattice-matched HfN buffer layers for epitaxy of GaN on Si. Appl Phys Lett, 2002, 81: 1450-1452 CrossRef Google Scholar
[31] Tolle J, Roucka R, Tsong I, et al. Epitaxial growth of group III nitrides on silicon substrates via a reflective lattice-matched zirconium diboride buffer layer. Appl Phys Lett, 2003, 82: 2398-2400 CrossRef Google Scholar
[32] Park C, Kang J, Kim K, et al. E?ect of a bu?er layer on GaN growth on a Si(111) substrate with a 3C-SiC intermediater layer. J Korean Phys Soc, 2000, 37: 1007-1011 CrossRef Google Scholar
[33] Hikosaka T, Narita T, Honda Y, et al. Optical and electrical properties of (1-101)GaN grown on a 7° off-axis (001)Si substrate. Appl Phys Lett, 2001, 84: 4717-4719 Google Scholar
[34] Matoussi A, Boufaden T, Missaoui A, et al. Porous silicon as an intermediate buffer layer for GaN growth on (100) Si. Microelectron J, 2001, 32: 995-998 CrossRef Google Scholar
[35] 35 Chen X, Honda Y, Kato T, et al. Growth of wurtzite-GaN on Si(211) by metalorganic vapor phase epitaxy. J Cryst Growth, 2002, 237-239: 1110–1113. Google Scholar
[36] Tanikawa T, Rudolph D, Hikosaka T. Growth of non-polar (11-20)GaN on a patterned (110)Si substrate by selective MOVPE. J Cryst Growth, 2008, 310: 4999-5002 CrossRef Google Scholar
[37] Ravash R, Bl?sing J, Hempel T, et al. Metal organic vapor phase epitaxy growth of single crystalline GaN on planar Si(211) substrates. Appl Phys Lett, 2009, 95: 242101 CrossRef Google Scholar
[38] Suzuki N, Uchida T, Tanikawa T, et al. HVPE growth of semi-polar (11-22)GaN on GaN template (113)Si substrate. J Cryst Growth, 2009, 311: 2875-2878 CrossRef Google Scholar
[39] Ravash R, Blaesing J, Dadgar A, et al. Semipolar single component GaN on planar high index Si(11h) substrates. Appl Phys Lett, 2010, 97: 142102 CrossRef Google Scholar
[40] Reiher F, Dadgar A, Bl?sing J, et al. Metalorganic vapor-phase epitaxy of GaN layers on Si substrates with Si(110) and other high-index surfaces. J Cryst Growth, 2010, 312: 180-184 CrossRef Google Scholar
[41] Ravash R, Dadgar A, Bertram F, et al. MOVPE growth of semi-polar GaN light-emitting diode structures on planar Si(112) and Si(113) substrates. J Cryst Growth, 2013, 370: 288-292 CrossRef Google Scholar
[42] 42 Ishikawa H, Yamamoto K, Egawa T, et al. Thermal stability of GaN on (111) Si substrate. J Cryst Growth, 1998, 189-190: 178–182. Google Scholar
[43] Yang J, Lunev A, Simin G, et al. Selective area deposited blue GaN-InGaN multiple-quantum well light emitting diodes over silicon substrates. Appl Phys Lett, 2000, 76: 273-275 CrossRef Google Scholar
[44] 44 Jiang F, Wang L, Fang W. Method for manufacturing Indium Gallium Aluminium Nitride thin film on silicon substrate. 美国专利, 2009, US 7615420. Google Scholar
[45] 45 Jiang F, Shao B, Wang L, et al. Method for fabricating high-quality semiconductor light-emitting devices on silicon substrates. 美国专利, 2011, US 7902556. Google Scholar
[46] 46 王立, 方文卿, 江风益. 在硅衬底上制备铟镓铝氮材料的方法. 中国专利, 2008, ZL 200510027808.X. Google Scholar
[47] 47 江风益, 王立, 方文卿. 在硅衬底上制备铟镓铝氮薄膜的方法. 中国专利, 2007, ZL 200510030319.X. Google Scholar
[48] 48 江风益, 邵碧琳, 王立, 等. 在硅衬底上制备高质量发光半导体薄膜的方法. 中国专利, 2008, ZL 200510110566.0. Google Scholar
[49] Sakai A, Sunakawa H, Usui A. Defect structure in selectively grown GaN films with low threading dislocation density. Appl Phys Lett, 1997, 71: 2259-2261 CrossRef Google Scholar
[50] Zheleva T, Nam O, Bremser M, et al. Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl Phys Lett, 1997, 71: 2472-2474 CrossRef Google Scholar
[51] Nam O, Bremser M, Zheleva T, et al. Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy. Appl Phys Lett, 1997, 71: 2638-2640 CrossRef Google Scholar
[52] Contreras O, Ponce F, Christen J, et al. Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si. Appl Phys Lett, 2002, 81: 4712-4714 CrossRef Google Scholar
[53] Dadgar A, Bl?sing J, Diez A, et al. Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn J Appl Phys, 2000, 39: L1183 CrossRef Google Scholar
[54] Semond F, Lorenzini P, Grandjean N, et al. High-electron-mobility AlGaN/GaN heterostructures grown on Si(111) by molecular-beam epitaxy. Appl Phys Lett, 2001, 78: 335-337 CrossRef Google Scholar
[55] Dadgar A, Hums C, Diez A, et al. Growth of blue GaN LED structures on 150-mm Si(111). J Cryst Growth, 2006, 297: 279-282 CrossRef Google Scholar
[56] 56 王立, 江风益. 获得在分割衬底上制造的半导体器件的高质量边界的方法. 中国专利, 2010, ZL200710104428.0. Google Scholar
[57] 57 Wang L, Jiang F. Method for obtaining high-quality boundary for semiconductor devices fabricated on a partitioned substrate. 欧盟专利, 2010, EP2140504. Google Scholar
[58] Jang H, Lee J. Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN. Appl Phys Lett, 2004, 85: 5920-5922 CrossRef Google Scholar
[59] Jang H, Son J, Lee J, et al. Highly reflective low resistance Ag-based Ohmic contacts on p-type GaN using Mg overlayer. Appl Phys Lett, 2007, 90: 012106 CrossRef Google Scholar
[60] Ma H, Han Y, Wei J, et al. A novel Ni/Ag/Pt ohmic contact to P-type GaN for flip-chip light-emitting diodes. Chin Phys Lett, 2006, 23: 2299-2302 CrossRef Google Scholar
[61] Wang G, Xiong C, Liu J, et al. Improving p-type contact characteristics by Ni-assisted annealing and effects on surface morphologic evolution of InGaN LED films grown on Si (111). Appl Surf Sci, 2011, 257: 8675-8678 CrossRef Google Scholar
[62] Venugopalan H, Mohney S, Luther B, et al. Interfacial reactions between nickel thin films and GaN. J Appl Phys, 1997, 82: 650-654 CrossRef Google Scholar
[63] Jang H, Lee S, Ryu S, et al. Interfacial band bendings in Al Ohmic contacts to laser-irradiated Ga-Face and N-Face n-GaN. Electrochem Solid-State Lett, 2009, 12: H405-H407 CrossRef Google Scholar
[64] Jung S, Seong T, Kim H, et al. Electrical properties of Ti/Al ohmic contacts to sulfur-passivated N-face n-type GaN for vertical-structure light-emitting diodes. Electrochem Solid-State Lett, 2009, 12: H275-H277 CrossRef Google Scholar
[65] Kim H, Ryou J, Dupuis R, et al. Electrical characteristics of contacts to thin film N-polar n-type GaN. Appl Phys Lett, 2008, 93: 192106 CrossRef Google Scholar
[66] Jang T, Lee S, Nam O. Investigation of Pd/Ti/Al and Ti/Al Ohmic contact materials on Ga-face and N-face surfaces of n-type GaN. Appl Phys Lett, 2006, 88: 193505 CrossRef Google Scholar
[67] 陈 鹏. 表面处理对硅衬底GaN基LED粗化及出光效率影响的研究. 硕士学位论文: 2012: 19–56, Google Scholar
[68] 68 Jiang F, Wang L, Fang W. Semiconductor light-emitting device and method for making same. 美国专利局, 2011, 专利号: US7919784B2. Google Scholar
[69] 崔 志勇. 晶相偏离硅衬底上GaN材料特性及位错研究. 硕士学位论文: 2012: 26–27, Google Scholar
[70] Jia H, Guo L, Wang W, et al. Recent progress in GaN-based light-emitting diodes. Adv Mater, 2009, 21: 4641-4646 CrossRef Google Scholar
[71] Wang X, Jia H, Guo L, et al. White light-emitting diodes based on a single InGaN emission layer. Appl Phys Lett, 2007, 91: 161912 CrossRef Google Scholar
[72] Nakamura S, Senoh M, Iwasa N, et al. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn J Appl Phys, 1995, 34: L797-L799 CrossRef Google Scholar
图1
(网络版彩图)不同切偏角Si(111)衬底生长的GaN基蓝光LED量子阱荧光显微形貌. (a) 衬底切偏角小于0.3°; (b) 衬底切偏角2°左右
图2
(网络版彩图)图形硅衬底示意图. (a) 俯视图; (b) 采用介质膜分割线的截面图; (c) 采用沟槽分割线的截面图
图3
(网络版彩图)经过精抛光和湿法清洗后的Si(111)衬底表面AFM形貌图(10 μm×10 μm扫描范围). (a) 未经过MOCVD内干法清洗, RMS=0.583 nm; (b) 经过MOCVD干法清洗后, RMS=0.178 nm
图4
(网络版彩图)金属Ga与硅衬底反应形成的Ga回熔 缺陷
图5
(网络版彩图)采用100 nm厚AlN缓冲层, 经无掩模微侧向外延技术获得的硅衬底GaN表面AFM形貌. RMS= 0.148 nm(2 μm×2 μm扫描范围), GaN总厚3.2 μm
图6
(网络版彩图)采用100 nm厚AlN缓冲层, 经无掩模微侧向外延技术获得的GaN X射线双晶摇摆曲线
图7
(网络版彩图)采用100 nm厚AlN缓冲层, 经无掩模微侧向外延技术获得的硅衬底GaN薄膜TEM形貌
图8
(网络版彩图)图形化及非图形化硅衬底生长GaN基LED不同阶段外延片形变示意图
图9
(网络版彩图)6英寸硅基LED波长分布图. (a) PL mapping图; (b) EL mapping图
图10
(网络版彩图)硅衬底垂直结构薄膜型LED芯片制造流程图
图11
(网络版彩图)硅衬底垂直结构薄膜型LED芯片去边工艺示意图
图12
(网络版彩图)牺牲Ni工艺后p-GaN表面Ni2p XPS图谱
图13
(网络版彩图)不同刻蚀工艺后N极性n型表面EDS谱. (a) RIE刻蚀50 min; (b) RIE刻蚀20 min; (c) 不刻蚀
图14
样品A, B, C粗化1 min和2 min后的SEM图
图15
(网络版彩图)传统垂直结构LED芯片电流、发光分布图
图16
(网络版彩图)具有互补电极的垂直结构LED芯片电流、发光分布图
图17
(网络版彩图)通过回熔过程释放GaN薄膜残余张应力的工艺流程
图18
(网络版彩图)本单位研制硅衬底GaN基蓝、绿、黄光LED光功率及外量子效率与工作电流关系. 芯片有效pn结面积为1 mm2, 图中所给波长为350 mA电流下的主波长
膜状态 |
||||
自由状态 |
3.1891 |
- |
5.1855 |
- |
衬底剥离前 |
3.1927 |
0.113 |
5.1821 |
|
衬底剥离后 |
3.1911 |
0.063 |
5.1828 |
|
回熔后 |
3.1888 |
5.1860 |
0.010 |
研究机构 |
pn结有效面积 |
主波长@350 mA |
光功率@350 mA |
工作电压@350 mA |
EQE@350 mA |
Osram |
1 mm2 |
440 nm |
634 mW |
3.15 V |
64.3 % |
Bridgelux & Toshiba |
1 mm2 |
蓝光(波长不详) |
614 mW |
3.1 V |
─ |
南昌大学 |
1 mm2 |
450 nm蓝 |
657 mW |
3.05 V |
68.1 % |
南昌大学 |
1 mm2 |
521 nm绿 |
262 mW |
2.90 V |
31.5 % |
南昌大学 |
1 mm2 |
567 nm黄 |
73 mW |
3.10 V |
9.5 % |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1