Recent progress of research on III-nitride deep ultraviolet light-emitting diode

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 45, Issue 6: 067303(2015) https://doi.org/10.1360/SSPMA2015-00026

Recent progress of research on III-nitride deep ultraviolet light-emitting diode

JunXi WANG1,2,3,*, JianChang YAN1,2,3,*, YaNan GUO1,2,3, Yun ZHANG1,2,3, YingDong TIAN1,2,3, ShaoXin ZHU1,2,3, Xiang CHEN1,2,3, LiLi SUN1,2,3, JinMin LI1,2,3
More info
  • ReceivedJan 16, 2015
  • AcceptedMar 16, 2015
  • PublishedApr 27, 2015
PACS numbers

Abstract

基于三族氮化物(III-nitride)材料的紫外发光二极管(UV LED)在杀菌消毒、聚合物固化、生化探测、非视距通讯及特种照明等领域有着广阔的应用前景, 近年来受到越来越多的关注和重视. 在过去的十多年里, 氮化物UV LED取得了长足的进步, 发光波长400–210 nm之间的氮化物UV LED先后被研发出来, 短于360 nm的深紫外LED (DUV LED)的外量子效率(EQE)最好结果已超过10%, 很大程度上得益于核心AlGaN材料制备技术的进展. 通过提高AlGaN外延材料及量子结构中的Al组分, 可以实现更短波长的UV LED, 但是源于Al(Ga)N材料的特性, 随着Al组分的提高, 高质量材料外延和实现有效掺杂面临越来越高的挑战. 本文首先从材料外延和掺杂研究的角度出发, 分别从UV LED的量子结构与效率、关键芯片工艺、光提取、可靠性与热管理等方面, 详细阐述探讨了发光波长短于360 nm的DUV LED研究中面临的核心难点及近年来的一系列重要研究进展.


Funded by

国家自然科学基金(61376047)

国家高技术研究发展计划(2011AA03A111)


References

[1] Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2008, 2: 77-84 CrossRef Google Scholar

[2] Chichibu S F, Uedono A, Onuma T, et al. Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors. Nat Mater, 2006, 5: 810-816 CrossRef Google Scholar

[3] Morita D, Yamamoto M, Akaishi K, et al. Watt-class high-output-power 365 nm ultraviolet light-emitting diodes. Jpn J Appl Phys, 2004, 43: 5945 CrossRef Google Scholar

[4] Han J, Crawford M H, Shul R J, et al. AlGaN/GaN quantum well ultraviolet light emitting diodes. Appl Phys Lett, 1998, 73: 1688-1690 CrossRef Google Scholar

[5] Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006, 441: 325-328 CrossRef Google Scholar

[6] Hirayama H, Maeda N, Fujikawa S, et al. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 2014, 53: 100209 CrossRef Google Scholar

[7] Nishida T, Kobayashi N. 346 nm emission from AlGaN multi-quantum-well light emitting diode. Phys Status Solidi A, 1999, 176: 45-48 CrossRef Google Scholar

[8] Kinoshita A, Hirayama H, Ainoya M, et al. Room-temperature operation at 333 nm of Al0. 03Ga0. 97N/Al0. 25Ga0. 75N quantum-well light- emitting diodes with Mg-doped superlattice layers. Appl Phys Lett, 2000, 77: 175-177 CrossRef Google Scholar

[9] Nishida T, Saito H, Kobayashi N. Submilliwatt operation of AlGaN-based ultraviolet light-emitting diode using short-period alloy superlattice. Appl Phys Lett, 2001, 78: 399-400 CrossRef Google Scholar

[10] Nishida T, Saito H, Kobayashi N. Milliwatt operation of AlGaN-based single-quantum-well light emitting diode in the ultraviolet region. Appl Phys Lett, 2001, 78: 3927-3928 CrossRef Google Scholar

[11] Edmond J, Abare A, Bergman M, et al. High efficiency GaN-based LEDs and lasers on SiC. J Cryst Growth, 2004, 272: 242-250 CrossRef Google Scholar

[12] Adivarahan V, Chitnis A, Zhang J, et al. Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells. Appl Phys Lett, 2001, 79: 4240-4242 CrossRef Google Scholar

[13] Mino T, Hirayama H, Takano T, et al. Characteristics of epitaxial lateral overgrowth AlN templates on (111)Si substrates for AlGaN deep-UV LEDs fabricated on different direction stripe patterns. Phys Status Solidi C, 2012, 9: 802-805 CrossRef Google Scholar

[14] Mino T, Hirayama H, Takano T, et al. Realization of 256–278 nm AlGaN-based deep-ultraviolet light-emitting diodes on Si substrates using epitaxial lateral overgrowth AlN templates. Appl Phys Express, 2011, 4: 092104 CrossRef Google Scholar

[15] Zhang Y J, Gautier S, Cho C Y, et al. Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si (111). Appl Phys Lett, 2013, 102: 011106 CrossRef Google Scholar

[16] Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2011, 26: 014036 CrossRef Google Scholar

[17] Ban K, Yamamoto J, Takeda K, et al. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl Phys Express, 2011, 4: 052101 CrossRef Google Scholar

[18] Kamiyama S, Iwaya M, Hayashi N, et al. Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. J Cryst Growth, 2001, 223: 83-91 CrossRef Google Scholar

[19] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl Phys Lett, 1986, 48: 353-355 CrossRef Google Scholar

[20] 20 Yan J C, Wang J X, Liu N X, et al. Characterization of AlGaN on GaN template grown by MOCVD. Proc SPIE, 2008, doi: 10.1117/12.755635. Google Scholar

[21] Otsuka N, Tsujimura A, Hasegawa Y, et al. Room temperature 339 nm emission from Al0. 13Ga0. 87N/Al0. 10Ga0. 90N double heterostructure light-emitting diode on sapphire substrate. Jpn J Appl Phys, 2000, 39: L445 CrossRef Google Scholar

[22] Khan M A, Kuznia J N, Skogman R A, et al. Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates. Appl Phys Lett, 1992, 61: 2539-2541 CrossRef Google Scholar

[23] Khan M A, Skogman R A, Vanhove J M, et al. Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor-deposition. Appl Phys Lett, 1992, 60: 1366-1368 CrossRef Google Scholar

[24] Khan M A, Kuznia J N, Olson D T, et al. GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical-vapor-deposition. Appl Phys Lett, 1993, 63: 3470-3472 CrossRef Google Scholar

[25] Khan M A, Adivarahan V, Zhang J P, et al. Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells. Jpn J Appl Phys 2, 2001, 40: L1308-L1310 CrossRef Google Scholar

[26] Zhang J P, Kuokstis E, Fareed Q, et al. Pulsed atomic layer epitaxy of quaternary AlInGaN layers for ultraviolet light emitters. Phys Status Solidi A, 2001, 188: 95-99 CrossRef Google Scholar

[27] Zhang J P, Khan M A, Sun W H, et al. Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1?xN structures for deep ultraviolet emissions below 230 nm. Appl Phys Lett, 2002, 81: 4392-4394 CrossRef Google Scholar

[28] Wang H M, Zhang J P, Chen C Q, et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett, 2002, 81: 604-606 CrossRef Google Scholar

[29] Zhang J P, Wang H M, Gaevski M E, et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett, 2002, 80: 3542-3544 CrossRef Google Scholar

[30] Adivarahan V, Sun W H, Chitnis A, et al. 250 nm AlGaN light-emitting diodes. Appl Phys Lett, 2004, 85: 2175-2177 CrossRef Google Scholar

[31] Adivarahan V, Wu S, Zhang J P, et al. High-efficiency 269 nm emission deep ultraviolet light-emitting diodes. Appl Phys Lett, 2004, 84: 4762-4764 CrossRef Google Scholar

[32] Adivarahan V, Zhang J, Chitnis A, et al. Sub-milliwatt power III-N light emitting diodes at 285 nm. Jpn J Appl Phys, 2002, 41: L435-L436 CrossRef Google Scholar

[33] Chitnis A, Zhang J P, Adivarahan V, et al. 324 nm light emitting diodes with milliwatt powers. Jpn J Appl Phys, 2002, 41: L450-L451 CrossRef Google Scholar

[34] Zhang J P, Chitnis A, Adivarahan V, et al. Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm. Appl Phys Lett, 2002, 81: 4910-4912 CrossRef Google Scholar

[35] Sun W H, Zhang J P, Adivarahan V, et al. AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1. 5 mW. Appl Phys Lett, 2004, 85: 531-533 CrossRef Google Scholar

[36] Ambacher O. Growth and applications of group III-nitrides. J Phys D-Appl Phys, 1998, 31: 2653 CrossRef Google Scholar

[37] Zhang J, Hu X, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes. Jpn J Appl Phys, 2005, 44: 7250-7253 CrossRef Google Scholar

[38] Imura M, Nakano K, Fujimoto N, et al. High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio. Jpn J Appl Phys, 2006, 45: 8639-8643 CrossRef Google Scholar

[39] Imura M, Fujimoto N, Okada N, et al. Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio. J Cryst Growth, 2007, 300: 136-140 CrossRef Google Scholar

[40] Hirayama H, Yatabe T, Noguchi N, et al. 226–273 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire. Phys Status Solidi C, 2008, 5: 2969-2971 CrossRef Google Scholar

[41] Hirayama H, Yatabe T, Noguchi N, et al. 231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91: 071901 CrossRef Google Scholar

[42] Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys Status Solidi A, 2009, 206: 1176-1182 CrossRef Google Scholar

[43] Banal R G, Funato M, Kawakami Y. Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy. Appl Phys Lett, 2008, 92: 241905 CrossRef Google Scholar

[44] Banal R G, Funato M, Kawakami Y. Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy. Phys Status Solidi C, 2010, 7: 2111-2114 CrossRef Google Scholar

[45] Chen Z, Fareed R S Q, Gaevski M, et al. Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl Phys Lett, 2006, 89: 081905 CrossRef Google Scholar

[46] Adivarahan V, Fareed Q, Islam M, et al. Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn J Appl Phys, 2007, 46: L877-L879 CrossRef Google Scholar

[47] Imura M, Nakano K, Kitano T, et al. Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl Phys Lett, 2006, 89: 221901 CrossRef Google Scholar

[48] Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J Cryst Growth, 2007, 298: 257-260 CrossRef Google Scholar

[49] Kim M, Fujita T, Fukahori S, et al. AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates. Appl Phys Express, 2011, 4: 092102 CrossRef Google Scholar

[50] Iida K, Watanabe H, Takeda K, et al. High-efficiency AlGaN based UV emitters grown on high-crystalline-quality AlGaN using grooved AlN layer on sapphire substrate. Phys Status Solidi A, 2007, 204: 2000-2004 CrossRef Google Scholar

[51] Tsuzuki H, Mori F, Takeda K, et al. Novel UV devices on high-quality AlGaN using grooved underlying layer. J Cryst Growth, 2009, 311: 2860-2863 CrossRef Google Scholar

[52] Jain R, Sun W, Yang J, et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl Phys Lett, 2008, 93: 051113 CrossRef Google Scholar

[53] Shur M S, Gaska R. Deep-ultraviolet light-emitting diodes. IEEE Trans Electr Dev, 2010, 57: 12-25 CrossRef Google Scholar

[54] Hirayama H, Norimatsu J, Noguchi N, et al. Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates. Phys Status Solidi C, 2009, 6: S474-S477 CrossRef Google Scholar

[55] Yan J, Wang J, Liu N, et al. High quality AlGaN grown on a high temperature AlN template by MOCVD. J Semicond, 2009, 10: 103001 Google Scholar

[56] Dong P, Yan J, Zhang Y, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J Cryst Growth, 2014, 395: 9-13 CrossRef Google Scholar

[57] Zhang J P, Wang H M, Sun W H, et al. High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes. J Electron Mater, 2003, 32: 364-370 CrossRef Google Scholar

[58] Cantu P, Keller S, Mishra U, et al. Metalorganic chemical vapor deposition of highly conductive Al0. 65Ga0. 35N films. Appl Phys Lett, 2003, 82: 3683-3685 CrossRef Google Scholar

[59] Nakarmi M, Kim K, Zhu K, et al. Transport properties of highly conductive n-type Al-rich AlxGa1?xN (x≥0. 7). Appl Phys Lett, 2004, 85: 3769-3771 CrossRef Google Scholar

[60] Zhu K, Nakarmi M, Kim K, et al. Silicon doping dependence of highly conductive n-type Al0. 7Ga0. 3N. Appl Phys Lett, 2004, 85: 4669-4671 CrossRef Google Scholar

[61] Taniyasu Y, Kasu M, Makimoto T. Electrical conduction properties of n-type Si-doped AlN with high electron mobility (? 100 cm 2 V?1s?1). Appl Phys Lett, 2004, 85: 4672-4674 CrossRef Google Scholar

[62] Hwang J, Schaff W J, Eastman L F, et al. Si doping of high-Al-mole fraction AlxGa1-xN alloys with rf plasma-induced molecular- beam-epitaxy. Appl Phys Lett, 2002, 81: 5192-5194 CrossRef Google Scholar

[63] Li Y, Chen S, Kong M, et al. Defect reduction in Si-doped Al0. 45Ga0. 55N films by SiNx interlayer method. J Appl Phys, 2014, 115: 043503 CrossRef Google Scholar

[64] Kim K H, Li J, Jin S X, et al. III-nitride ultraviolet light-emitting diodes with delta doping. Appl Phys Lett, 2003, 83: 566-568 CrossRef Google Scholar

[65] Collazo R, Mita S, Xie J, et al. Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys Status Solidi C, 2011, 8: 2031-2033 CrossRef Google Scholar

[66] Katsuragawa M, Sota S, Komori M, et al. Thermal ionization energy of Si and Mg in AlGaN. J Cryst Growth, 1998, 189: 528-531 Google Scholar

[67] Jeon S-R , Ren Z, Cui G, et al. Investigation of Mg doping in high-Al content p-type AlxGa1?xN (0. 3? x? 0. 5). Appl Phys Lett, 2005, 86: 082107 CrossRef Google Scholar

[68] Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82: 3041-3403 CrossRef Google Scholar

[69] Kozodoy P, Smorchkova Y P, Hansen M, et al. Polarization-enhanced Mg doping of AlGaN/GaN superlattices. Appl Phys Lett, 1999, 75: 2444-2446 CrossRef Google Scholar

[70] Kozodoy P, Hansen M, DenBaars S P, et al. Enhanced Mg doping efficiency in Al0. 2Ga0. 8N/GaN superlattices. Appl Phys Lett, 1999, 74: 3681-3683 CrossRef Google Scholar

[71] Waldron E L, Graff J W, Schubert E F. Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices. Appl Phys Lett, 2001, 79: 2737-2739 CrossRef Google Scholar

[72] Wang L, Li R, Li D, et al. Strain modulation-enhanced Mg acceptor activation efficiency of Al0. 14Ga0. 86N/GaN superlattices with AlN interlayer. Appl Phys Lett, 2010, 96: 061110 CrossRef Google Scholar

[73] Simon J, Cao Y, Jena D. Short-period AlN/GaN p-type superlattices: hole transport use in p-n junctions. Phys Status Solidi C, 2010, 7: 2386-2389 CrossRef Google Scholar

[74] Cheng B, Choi S, Northrup J E, et al. Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl Phys Lett, 2013, 102: 231106 CrossRef Google Scholar

[75] Li J, Yang W, Li S, et al. Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-?-codoped AlxGa1?xN/AlyGa1?yN superlattices. Appl Phys Lett, 2009, 95: 151113 CrossRef Google Scholar

[76] Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science, 2010, 327: 60-64 CrossRef Google Scholar

[77] Zhang L, Ding K, Yan J C, et al. Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure. Appl Phys Lett, 2010, 97: 062103 CrossRef Google Scholar

[78] Zhang L, Ding K, Liu N X, et al. Theoretical study of polarization-doped GaN-based light-emitting diodes. Appl Phys Lett, 2011, 98: 101110 CrossRef Google Scholar

[79] Aoyagi Y, Takeuchi M, Iwai S, et al. High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition. Appl Phys Lett, 2011, 99: 112110 CrossRef Google Scholar

[80] Kinoshita T, Obata T, Yanagi H, et al. High p-type conduction in high-Al content Mg-doped AlGaN. Appl Phys Lett, 2013, 102: 012105 CrossRef Google Scholar

[81] Nakarmi M, Kim K, Khizar M, et al. Electrical and optical properties of Mg-doped Al0. 7Ga0. 3N alloys. Appl Phys Lett, 2005, 86: 092108 CrossRef Google Scholar

[82] Kawanishi H, Tomizawa T. Carbon-doped p-type (0001) plane AlGaN (Al= 6-55%) with high hole density. Phys Status Solidi B, 2012, 249: 459-463 CrossRef Google Scholar

[83] Li S, Zhang T, Wu J, et al. Polarization induced hole doping in graded AlxGa1?xN (x=0. 7~1) layer grown by molecular beam epitaxy. Appl Phys Lett, 2013, 102: 062108 CrossRef Google Scholar

[84] Marcinkevicius S, Pinos A, Liu K, et al. Intrinsic electric fields in AlGaN quantum wells. Appl Phys Lett, 2007, 90: 081914 CrossRef Google Scholar

[85] Murotani H, Saito T, Kato N, et al. Localization-induced inhomogeneous screening of internal electric fields in AlGaN-based quantum wells. Appl Phys Lett, 2007, 91: 231910 CrossRef Google Scholar

[86] Shatalov M, Yang J, Sun W, et al. Efficiency of light emission in high aluminum content AlGaN quantum wells. J Appl Phys, 2009, 105: 073103 CrossRef Google Scholar

[87] Banal R G, Funato M, Kawakami Y. Extremely high internal quantum efficiencies from AlGaN/AlN quantum wells emitting in the deep ultraviolet spectral region. Appl Phys Lett, 2011, 99: 011902 CrossRef Google Scholar

[88] Bhattacharyya A, Moustakas T, Zhou L, et al. Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency. Appl Phys Lett, 2009, 94: 181907 CrossRef Google Scholar

[89] Hirayama H, Kinoshita A, Yamabi T, et al. Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1?x?yN with In-segregation effect. Appl Phys Lett, 2002, 80: 207-209 CrossRef Google Scholar

[90] Hirayama H, Enomoto Y, Kinoshita A, et al. Room-temperature intense 320 nm band ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells. Appl Phys Lett, 2002, 80: 1589-1591 CrossRef Google Scholar

[91] Sun W, Shatalov M, Deng J, et al. Efficiency droop in 245–247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power. Appl Phys Lett, 2010, 96: 061102 CrossRef Google Scholar

[92] Tamulaitis G, Mickevi?ius J, Kazlauskas K, et al. Efficiency droop in high-Al-content AlGaN/AlGaN quantum wells. Phys Status Solidi C, 2011, 8: 2130-2132 CrossRef Google Scholar

[93] Hirayama H, Fujikawa S. Quaternary InAlGaN quantum-dot ultraviolet light-emitting diode emitting at 335 nm fabricated by anti-surfactant method. Phys Status Solidi C, 2008, 5: 2312-2315 CrossRef Google Scholar

[94] Verma J, Islam S M, Protasenko V, et al. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures. Appl Phys Lett, 2014, 104: 021105 CrossRef Google Scholar

[95] Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater, 2004, 3: 601-605 CrossRef Google Scholar

[96] Okamoto K, Niki I, Scherer A, et al. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl Phys Lett, 2005, 87: 071102 CrossRef Google Scholar

[97] Yeh D M, Huang C F, Chen C Y, et al. Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode. Appl Phys Lett, 2007, 91: 171103 CrossRef Google Scholar

[98] Cho C Y, Kwon M K, Lee S J, et al. Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN. Nanotechnology, 2010, 21: 205201 CrossRef Google Scholar

[99] Oh T S, Jeong H, Lee Y S, et al. Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster. Appl Phys Lett, 2009, 95: 111112 CrossRef Google Scholar

[100] Cho C Y, Zhang Y, Cicek E, et al. Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111). Appl Phys Lett, 2013, 102: 211110 CrossRef Google Scholar

[101] Lin J, Mohammadizia A, Neogi A, et al. Surface plasmon enhanced UV emission in AlGaN/GaN quantum well. Appl Phys Lett, 2010, 97: 221104 CrossRef Google Scholar

[102] Gao N, Huang K, Li J, et al. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Sci Rep, 2012, 2: 5225-5235 Google Scholar

[103] Hanlon A, Pattison P M, Kaeding J F, et al. 292 nm AlGaN single-quantum well light emitting diodes grown on transparent AlN base. Jpn J Appl Phys, 2003, 42: L628 CrossRef Google Scholar

[104] Park J S, Fothergill D W, Wellenius P, et al. Origins of parasitic emissions from 353 nm AlGaN-based ultraviolet light emitting diodes over SiC substrates. Jpn J Appl Phys, 2006, 45: 4083-4086 CrossRef Google Scholar

[105] Park J S, Fothergill D W, Zhang X, et al. Effect of carrier blocking layers on the emission characteristics of AlGaN-based ultraviolet light emitting diodes. Jpn J Appl Phys, 2005, 44: 7254-7259 CrossRef Google Scholar

[106] Zhang J, Wu S, Rai S, et al. AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission. Appl Phys Lett, 2003, 83: 3456-3458 CrossRef Google Scholar

[107] Fujioka A, Misaki T, Murayama T, et al. Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl Phys Express, 2010, 3: 041001 CrossRef Google Scholar

[108] Sumiya S, Zhu Y, Zhang J, et al. AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates. Jpn J Appl Phys, 2008, 47: 43 CrossRef Google Scholar

[109] Hirayama H, Tsukada Y, Maeda T, et al. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl Phys Express, 2010, 3: 031002 CrossRef Google Scholar

[110] Yan J, Wang J, Cong P, et al. Improved performance of UV-LED by p-AlGaN with graded composition. Phys Status Solidi C, 2011, 8: 461-463 CrossRef Google Scholar

[111] Mehnke F, Kuhn C, Guttmann M, et al. Efficient charge carrier injection into sub–250?nm AlGaN multiple quantum well light emitting diodes. Appl Phys Lett, 2014, 105: 051113 CrossRef Google Scholar

[112] Fan Z, Mohammad S N, Kim W, et al. Very low resistance multilayer Ohmic contact to n-GaN. Appl Phys Lett, 1996, 68: 1672-1674 CrossRef Google Scholar

[113] Mohammad S N, Fan Z, Botchkarev A, et al. Near-ideal platinum-GaN Schottky diodes. Electron Lett, 1996, 32: 598-599 CrossRef Google Scholar

[114] Ruvimov S, Liliental-Weber Z, Washburn J, et al. Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN. Appl Phys Lett, 1996, 69: 1556-1558 CrossRef Google Scholar

[115] Suzue K, Mohammad S N, Fan Z, et al. Electrical conduction in platinum-gallium nitride Schottky diodes. J Appl Phys, 1996, 80: 4467-4478 CrossRef Google Scholar

[116] Lee C T, Kao H-W . Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN. Appl Phys Lett, 2000, 76: 2364-2366 CrossRef Google Scholar

[117] Chor E, Zhang D, Gong H, et al. Electrical characterization and metallurgical analysis of Pd-containing multilayer contacts on GaN. J Appl Phys, 2001, 90: 1242-1249 CrossRef Google Scholar

[118] Papanicolaou N, Rao M, Mittereder J, et al. Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type GaN formed by vacuum annealing. J Vac Sci Technol B, 2001, 19: 261-267 CrossRef Google Scholar

[119] Wang D F, Shiwei F, Lu C, et al. Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN. J Appl Phys, 2001, 89: 6214-6217 CrossRef Google Scholar

[120] Zhao M Z, Jiang R L, Chen P, et al. Ti/Al/Pt/Au and Al ohmic contacts on Si-substrated GaN. Appl Phys Lett, 2001, 79: 218-220 CrossRef Google Scholar

[121] Kumar V, Zhou L, Selvanathan D, et al. Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n-GaN. J Appl Phys, 2002, 92: 1712-1714 CrossRef Google Scholar

[122] Lu C, Chen H, Lv X, et al. Temperature and doping-dependent resistivity of Ti/Au/Pd/Au multilayer ohmic contact to n-GaN. J Appl Phys, 2002, 91: 9218-9224 CrossRef Google Scholar

[123] Motayed A, Davydov A V, Bendersky L A, et al. High-transparency Ni/Au bilayer contacts to n-type GaN. J Appl Phys, 2002, 92: 5218-5227 CrossRef Google Scholar

[124] Schweitz K, Wang P, Mohney S, et al. V/Al/Pt/Au ohmic contact to n-AlGaN/GaN heterostructures. Appl Phys Lett, 2002, 80: 1954-1956 CrossRef Google Scholar

[125] Motayed A, Bathe R, Wood M C, et al. Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN. J Appl Phys, 2003, 93: 1087-1094 CrossRef Google Scholar

[126] Zakharov D, Liliental-Weber Z, Motayed A, et al. TEM studies and contact resistance of Au/Ni/Ti/Ta/n-GaN ohmic contacts. In: MRS Proceedings. Cambridge: Cambridge University Press. 2003, Google Scholar

[127] Mohammad S N. Contact mechanisms and design principles for nonalloyed ohmic contacts to n-GaN. J Appl Phys, 2004, 95: 4856-4865 CrossRef Google Scholar

[128] Motayed A, Jah M, Sharma A, et al. Two-step surface treatment technique: Realization of nonalloyed low-resistance Ti/Al/Ti/Au ohmic contact to n-GaN. J Vac Sci Technol B, 2004, 22: 663-667 CrossRef Google Scholar

[129] Motayed A, Jones K A, Derenge M A, et al. Electrical, microstructural, and thermal stability characteristics of Ta/Ti/Ni/Au contacts to n-GaN. J Appl Phys, 2004, 95: 1516-1524 CrossRef Google Scholar

[130] Srivastava S, Hwang S M, Islam M, et al. Ohmic contact to high-aluminum-content AlGaN epilayers. J Electron Mater, 2009, 38: 2348-2352 CrossRef Google Scholar

[131] France R, Xu T, Chen P, et al. Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition. Appl Phys Lett, 2007, 90: 062115 CrossRef Google Scholar

[132] Shatalov M, Sun W, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 2012, 5: 082101 CrossRef Google Scholar

[133] Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Tech, 2011, 26: 014036 CrossRef Google Scholar

[134] Dong P, Yan J, Wang J, et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl Phys Lett, 2013, 102: 241113 CrossRef Google Scholar

[135] Oder T, Kim K, Lin J, et al. III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl Phys Lett, 2004, 84: 466-468 CrossRef Google Scholar

[136] Zhou L, Epler J E, Krames M R, et al. Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes. Appl Phys Lett, 2006, 89: 241113 CrossRef Google Scholar

[137] Khizar M, Fan Z Y, Kim K H, et al. Nitride deep-ultraviolet light-emitting diodes with microlens array. Appl Phys Lett, 2005, 2: 173504 Google Scholar

[138] Pernot C, Kim M, Fukahori S, et al. Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl Phys Express, 2010, 3: 061004 CrossRef Google Scholar

[139] Inazu T, Fukahori S, Pernot C, et al. Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes. Jpn J Appl Phys, 2011, 50: 122101 CrossRef Google Scholar

[140] Kolbe T, Knauer A, Chua C, et al. Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl Phys Lett, 2010, 97: 171105 CrossRef Google Scholar

[141] Nam K B, Li J, Nakarmi M L, et al. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl Phys Lett, 2004, 84: 5264-5266 CrossRef Google Scholar

[142] Ryu H Y, Choi I-G , Choi H-S , et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl Phys Express, 2013, 6: 062101 CrossRef Google Scholar

[143] Hou M, Qin Z, He C, et al. Effect of injection current on the optical polarization of AlGaN-based ultraviolet light-emitting diodes. Opt Express, 2014, 22: 19589 CrossRef Google Scholar

[144] Ryu H-Y . Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures. Nanoscale Res Lett, 2014, 9: 1-7 CrossRef Google Scholar

[145] Nishida T, Saito H, Kobayashi N. Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN. Appl Phys Lett, 2001, 79: 711-712 CrossRef Google Scholar

[146] Akita K, Nakamura T, Hirayama H. Advantages of gan substrates in InAlGan quaternary ultraviolet-light-emitting diodes. Jpn J Appl Phys, 2004, 43: 8030-8031 CrossRef Google Scholar

[147] Hirayama H, Akita K, Kyono T, et al. High-efficiency 352 nm quaternary InAlGaN-based ultraviolet light-emitting diodes grown on GaN substrates. Jpn J Appl Phys, 2004, 43: L1241 CrossRef Google Scholar

[148] Yasan A, McClintock R, Mayes K, et al. Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire. Appl Phys Lett, 2002, 81: 2151-2153 CrossRef Google Scholar

[149] Slack G. AlN single crystals. J Cryst Growth, 1977, 42: 560-563 CrossRef Google Scholar

[150] Bondokov R T, Mueller S G, Morgan K E, et al. Large-area AlN substrates for electronic applications: An industrial perspective. J Cryst Growth, 2008, 310: 4020-4026 CrossRef Google Scholar

[151] Herro Z, Zhuang D, Schlesser R, et al. Growth of AlN single crystalline boules. J Cryst Growth, 2010, 312: 2519-2521 CrossRef Google Scholar

[152] Sumathi R R, Gille P. Development and progress in bulk c-plane AlN single-crystalline template growth for large-area native seeds. Jpn J Appl Phys, 2013, 52: 08JA02 CrossRef Google Scholar

[153] Hartmann C, Dittmar A, Wollweber J, et al. Bulk AlN growth by physical vapour transport. Semicond Sci Technol, 2014, 29: 084002 CrossRef Google Scholar

[154] Grandusky J R, Chen J, Mendrick M C, et al. Improved efficiency high power 260 nm pseudomorphic ultraviolet light emitting diodes. In: Lester Eastman Conference on High Performance Devices (LEC). 2012, 2012: 1-2 Google Scholar

[155] Grandusky J R, Chen J, Gibb S R, et al. 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl Phys Express, 2013, 6: 032101 CrossRef Google Scholar

[156] Kumagai Y, Kubota Y, Nagashima T, et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl Phys Express, 2012, 5: 055504 CrossRef Google Scholar

[157] Kinoshita T, Hironaka K, Obata T, et al. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 2012, 5: 122101 CrossRef Google Scholar

[158] Kinoshita T, Obata T, Nagashima T, et al. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 2013, 6: 092103 CrossRef Google Scholar

[159] Kinoshita T, Hironaka K, Obata T, et al. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl Phys Express, 2012, 5: 122101 CrossRef Google Scholar

[160] Sawyer S, Rumyantsev S L, Shur M S. Degradation of AlGaN-based ultraviolet light emitting diodes. Solid-State Electron, 2008, 52: 968-972 CrossRef Google Scholar

[161] 161 Shatalov M, Bilenko Y, Gaska R, et al. Reliability of deep UV LEDs. OSA/CLEO/IQEC, 2009. Google Scholar

[162] Meneghini M, Pavesi M, Trivelli N, et al. Reliability of deep-UV light-emitting diodes. IEEE Trans Device Mater Rel, 2008, 8: 248-254 CrossRef Google Scholar

[163] Moe C G, Reed M L, Garrett G A, et al. Current-induced degradation of high performance deep ultraviolet light emitting diodes. Appl Phys Lett, 2010, 96: 213512 CrossRef Google Scholar

[164] Pinos A, Marcinkevi?ius S, Shur M S. High current-induced degradation of AlGaN ultraviolet light emitting diodes. J Appl Phys, 2011, 109: 103108 CrossRef Google Scholar

[165] Gong Z, Gaevski M, Adivarahan V, et al. Optical power degradation mechanisms in AlGaN based 280 nm deep ultraviolet light-emitting diodes on sapphire. Appl Phys Lett, 2006, 88: 121106 CrossRef Google Scholar

[166] Pinos A, Marcinkevi?ius S, Yang J, et al. Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy. Appl Phys Lett, 2009, 95: 181914 CrossRef Google Scholar

[167] Shatalov M, Chitnis A, Yadav P, et al. Thermal analysis of flip-chip packaged 280 nm nitride-based deep ultraviolet light-emitting diodes. Appl Phys Lett, 2005, 86: 201109 CrossRef Google Scholar

[168] Bilenko Y, Lunev A, Hu X, et al. 10 milliwatt pulse operation of 265 nm AlGaN light emitting diodes. Jpn J Appl Phys, 2005, 44: L98-L100 CrossRef Google Scholar

[169] 169 Gaska R, Shur M S, Zhang J. Physics and applications of deep uv LEDs. IEEE, 2006, doi: 10.1109/ICSICT.2006.306525. Google Scholar

[170] Fujioka A, Asada K, Yamada H, et al. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond Sci Technol, 2014, 29: 084005 CrossRef Google Scholar

[171] Kawasaki K, Koike C, Aoyagi Y, et al. Vertical AlGaN deep ultraviolet light emitting diode emitting at 322 nm fabricated by the laser lift-off technique. Appl Phys Lett, 2006, 89: 261114 CrossRef Google Scholar

[172] Takeuchi M, Maegawa T, Shimizu H, et al. AlN/AlGaN short-period superlattice sacrificial layers in laser lift-off for vertical-type AlGaN-based deep ultraviolet light emitting diodes. Appl Phys Lett, 2009, 94: 061117 CrossRef Google Scholar

[173] Adivarahan V, Heidari A, Zhang B, et al. Vertical injection thin film deep ultraviolet light emitting diodes with AlGaN multiple-quantum wells active region. Appl Phys Express, 2009, 2: 092102 CrossRef Google Scholar

[174] Balakrishnan K, Adivarahan V, Fareed Q, et al. First demonstration of semipolar deep ultraviolet light emitting diode on m-plane sapphire with AlGaN multiple quantum wells. Jpn J Appl Phys, 2010, 49: 040206 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1