References
[1]
Khan
A,
Balakrishnan
K,
Katona
T.
Ultraviolet light-emitting diodes based on group three nitrides.
Nat Photonics,
2008, 2: 77-84
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultraviolet light-emitting diodes based on group three nitrides&author=Khan A&author=Balakrishnan K&author=Katona T&publication_year=2008&journal=Nat Photonics&volume=2&pages=77-84
[2]
Chichibu
S F,
Uedono
A,
Onuma
T, et al.
Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors.
Nat Mater,
2006, 5: 810-816
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors&author=Chichibu S F&author=Uedono A&author=Onuma T&publication_year=2006&journal=Nat Mater&volume=5&pages=810-816
[3]
Morita
D,
Yamamoto
M,
Akaishi
K, et al.
Watt-class high-output-power 365 nm ultraviolet light-emitting diodes.
Jpn J Appl Phys,
2004, 43: 5945
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Watt-class high-output-power 365 nm ultraviolet light-emitting diodes&author=Morita D&author=Yamamoto M&author=Akaishi K&publication_year=2004&journal=Jpn J Appl Phys&volume=43&pages=5945
[4]
Han
J,
Crawford
M H,
Shul
R J, et al.
AlGaN/GaN quantum well ultraviolet light emitting diodes.
Appl Phys Lett,
1998, 73: 1688-1690
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN/GaN quantum well ultraviolet light emitting diodes&author=Han J&author=Crawford M H&author=Shul R J&publication_year=1998&journal=Appl Phys Lett&volume=73&pages=1688-1690
[5]
Taniyasu
Y,
Kasu
M,
Makimoto
T.
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.
Nature,
2006, 441: 325-328
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An aluminium nitride light-emitting diode with a wavelength of 210 nanometres&author=Taniyasu Y&author=Kasu M&author=Makimoto T&publication_year=2006&journal=Nature&volume=441&pages=325-328
[6]
Hirayama
H,
Maeda
N,
Fujikawa
S, et al.
Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes.
Jpn J Appl Phys,
2014, 53: 100209
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes&author=Hirayama H&author=Maeda N&author=Fujikawa S&publication_year=2014&journal=Jpn J Appl Phys&volume=53&pages=100209
[7]
Nishida
T,
Kobayashi
N.
346 nm emission from AlGaN multi-quantum-well light emitting diode.
Phys Status Solidi A,
1999, 176: 45-48
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=346 nm emission from AlGaN multi-quantum-well light emitting diode&author=Nishida T&author=Kobayashi N&publication_year=1999&journal=Phys Status Solidi A&volume=176&pages=45-48
[8]
Kinoshita
A,
Hirayama
H,
Ainoya
M, et al.
Room-temperature operation at 333 nm of Al0. 03Ga0. 97N/Al0. 25Ga0. 75N quantum-well light- emitting diodes with Mg-doped superlattice layers.
Appl Phys Lett,
2000, 77: 175-177
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Room-temperature operation at 333 nm of Al0. 03Ga0. 97N/Al0. 25Ga0. 75N quantum-well light- emitting diodes with Mg-doped superlattice layers&author=Kinoshita A&author=Hirayama H&author=Ainoya M&publication_year=2000&journal=Appl Phys Lett&volume=77&pages=175-177
[9]
Nishida
T,
Saito
H,
Kobayashi
N.
Submilliwatt operation of AlGaN-based ultraviolet light-emitting diode using short-period alloy superlattice.
Appl Phys Lett,
2001, 78: 399-400
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Submilliwatt operation of AlGaN-based ultraviolet light-emitting diode using short-period alloy superlattice&author=Nishida T&author=Saito H&author=Kobayashi N&publication_year=2001&journal=Appl Phys Lett&volume=78&pages=399-400
[10]
Nishida
T,
Saito
H,
Kobayashi
N.
Milliwatt operation of AlGaN-based single-quantum-well light emitting diode in the ultraviolet region.
Appl Phys Lett,
2001, 78: 3927-3928
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Milliwatt operation of AlGaN-based single-quantum-well light emitting diode in the ultraviolet region&author=Nishida T&author=Saito H&author=Kobayashi N&publication_year=2001&journal=Appl Phys Lett&volume=78&pages=3927-3928
[11]
Edmond
J,
Abare
A,
Bergman
M, et al.
High efficiency GaN-based LEDs and lasers on SiC.
J Cryst Growth,
2004, 272: 242-250
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High efficiency GaN-based LEDs and lasers on SiC&author=Edmond J&author=Abare A&author=Bergman M&publication_year=2004&journal=J Cryst Growth&volume=272&pages=242-250
[12]
Adivarahan
V,
Chitnis
A,
Zhang
J, et al.
Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells.
Appl Phys Lett,
2001, 79: 4240-4242
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells&author=Adivarahan V&author=Chitnis A&author=Zhang J&publication_year=2001&journal=Appl Phys Lett&volume=79&pages=4240-4242
[13]
Mino
T,
Hirayama
H,
Takano
T, et al.
Characteristics of epitaxial lateral overgrowth AlN templates on (111)Si substrates for AlGaN deep-UV LEDs fabricated on different direction stripe patterns.
Phys Status Solidi C,
2012, 9: 802-805
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Characteristics of epitaxial lateral overgrowth AlN templates on (111)Si substrates for AlGaN deep-UV LEDs fabricated on different direction stripe patterns&author=Mino T&author=Hirayama H&author=Takano T&publication_year=2012&journal=Phys Status Solidi C&volume=9&pages=802-805
[14]
Mino
T,
Hirayama
H,
Takano
T, et al.
Realization of 256–278 nm AlGaN-based deep-ultraviolet light-emitting diodes on Si substrates using epitaxial lateral overgrowth AlN templates.
Appl Phys Express,
2011, 4: 092104
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Realization of 256–278 nm AlGaN-based deep-ultraviolet light-emitting diodes on Si substrates using epitaxial lateral overgrowth AlN templates&author=Mino T&author=Hirayama H&author=Takano T&publication_year=2011&journal=Appl Phys Express&volume=4&pages=092104
[15]
Zhang
Y J,
Gautier
S,
Cho
C Y, et al.
Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si (111).
Appl Phys Lett,
2013, 102: 011106
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Near milliwatt power AlGaN-based ultraviolet light emitting diodes based on lateral epitaxial overgrowth of AlN on Si (111)&author=Zhang Y J&author=Gautier S&author=Cho C Y&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=011106
[16]
Kneissl
M,
Kolbe
T,
Chua
C, et al.
Advances in group III-nitride-based deep UV light-emitting diode technology.
Semicond Sci Technol,
2011, 26: 014036
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Advances in group III-nitride-based deep UV light-emitting diode technology&author=Kneissl M&author=Kolbe T&author=Chua C&publication_year=2011&journal=Semicond Sci Technol&volume=26&pages=014036
[17]
Ban
K,
Yamamoto
J,
Takeda
K, et al.
Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells.
Appl Phys Express,
2011, 4: 052101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells&author=Ban K&author=Yamamoto J&author=Takeda K&publication_year=2011&journal=Appl Phys Express&volume=4&pages=052101
[18]
Kamiyama
S,
Iwaya
M,
Hayashi
N, et al.
Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure.
J Cryst Growth,
2001, 223: 83-91
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure&author=Kamiyama S&author=Iwaya M&author=Hayashi N&publication_year=2001&journal=J Cryst Growth&volume=223&pages=83-91
[19]
Amano
H,
Sawaki
N,
Akasaki
I, et al.
Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer.
Appl Phys Lett,
1986, 48: 353-355
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer&author=Amano H&author=Sawaki N&author=Akasaki I&publication_year=1986&journal=Appl Phys Lett&volume=48&pages=353-355
[20]
20 Yan J C, Wang J X, Liu N X, et al. Characterization of AlGaN on GaN template grown by MOCVD. Proc SPIE, 2008, doi: 10.1117/12.755635.
Google Scholar
http://scholar.google.com/scholar_lookup?title=20 Yan J C, Wang J X, Liu N X, et al. Characterization of AlGaN on GaN template grown by MOCVD. Proc SPIE, 2008, doi: 10.1117/12.755635&
[21]
Otsuka
N,
Tsujimura
A,
Hasegawa
Y, et al.
Room temperature 339 nm emission from Al0. 13Ga0. 87N/Al0. 10Ga0. 90N double heterostructure light-emitting diode on sapphire substrate.
Jpn J Appl Phys,
2000, 39: L445
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Room temperature 339 nm emission from Al0. 13Ga0. 87N/Al0. 10Ga0. 90N double heterostructure light-emitting diode on sapphire substrate&author=Otsuka N&author=Tsujimura A&author=Hasegawa Y&publication_year=2000&journal=Jpn J Appl Phys&volume=39&pages=L445
[22]
Khan
M A,
Kuznia
J N,
Skogman
R A, et al.
Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates.
Appl Phys Lett,
1992, 61: 2539-2541
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-pressure metalorganic chemical vapor-deposition of AlN over sapphire substrates&author=Khan M A&author=Kuznia J N&author=Skogman R A&publication_year=1992&journal=Appl Phys Lett&volume=61&pages=2539-2541
[23]
Khan
M A,
Skogman
R A,
Vanhove
J M, et al.
Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor-deposition.
Appl Phys Lett,
1992, 60: 1366-1368
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor-deposition&author=Khan M A&author=Skogman R A&author=Vanhove J M&publication_year=1992&journal=Appl Phys Lett&volume=60&pages=1366-1368
[24]
Khan
M A,
Kuznia
J N,
Olson
D T, et al.
GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical-vapor-deposition.
Appl Phys Lett,
1993, 63: 3470-3472
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical-vapor-deposition&author=Khan M A&author=Kuznia J N&author=Olson D T&publication_year=1993&journal=Appl Phys Lett&volume=63&pages=3470-3472
[25]
Khan
M A,
Adivarahan
V,
Zhang
J P, et al.
Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells.
Jpn J Appl Phys 2,
2001, 40: L1308-L1310
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells&author=Khan M A&author=Adivarahan V&author=Zhang J P&publication_year=2001&journal=Jpn J Appl Phys 2&volume=40&pages=L1308-L1310
[26]
Zhang
J P,
Kuokstis
E,
Fareed
Q, et al.
Pulsed atomic layer epitaxy of quaternary AlInGaN layers for ultraviolet light emitters.
Phys Status Solidi A,
2001, 188: 95-99
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pulsed atomic layer epitaxy of quaternary AlInGaN layers for ultraviolet light emitters&author=Zhang J P&author=Kuokstis E&author=Fareed Q&publication_year=2001&journal=Phys Status Solidi A&volume=188&pages=95-99
[27]
Zhang
J P,
Khan
M A,
Sun
W H, et al.
Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1?xN structures for deep ultraviolet emissions below 230 nm.
Appl Phys Lett,
2002, 81: 4392-4394
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1?xN structures for deep ultraviolet emissions below 230 nm&author=Zhang J P&author=Khan M A&author=Sun W H&publication_year=2002&journal=Appl Phys Lett&volume=81&pages=4392-4394
[28]
Wang
H M,
Zhang
J P,
Chen
C Q, et al.
AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire.
Appl Phys Lett,
2002, 81: 604-606
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire&author=Wang H M&author=Zhang J P&author=Chen C Q&publication_year=2002&journal=Appl Phys Lett&volume=81&pages=604-606
[29]
Zhang
J P,
Wang
H M,
Gaevski
M E, et al.
Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management.
Appl Phys Lett,
2002, 80: 3542-3544
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management&author=Zhang J P&author=Wang H M&author=Gaevski M E&publication_year=2002&journal=Appl Phys Lett&volume=80&pages=3542-3544
[30]
Adivarahan
V,
Sun
W H,
Chitnis
A, et al.
250 nm AlGaN light-emitting diodes.
Appl Phys Lett,
2004, 85: 2175-2177
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=250 nm AlGaN light-emitting diodes&author=Adivarahan V&author=Sun W H&author=Chitnis A&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=2175-2177
[31]
Adivarahan
V,
Wu
S,
Zhang
J P, et al.
High-efficiency 269 nm emission deep ultraviolet light-emitting diodes.
Appl Phys Lett,
2004, 84: 4762-4764
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-efficiency 269 nm emission deep ultraviolet light-emitting diodes&author=Adivarahan V&author=Wu S&author=Zhang J P&publication_year=2004&journal=Appl Phys Lett&volume=84&pages=4762-4764
[32]
Adivarahan
V,
Zhang
J,
Chitnis
A, et al.
Sub-milliwatt power III-N light emitting diodes at 285 nm.
Jpn J Appl Phys,
2002, 41: L435-L436
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sub-milliwatt power III-N light emitting diodes at 285 nm&author=Adivarahan V&author=Zhang J&author=Chitnis A&publication_year=2002&journal=Jpn J Appl Phys&volume=41&pages=L435-L436
[33]
Chitnis
A,
Zhang
J P,
Adivarahan
V, et al.
324 nm light emitting diodes with milliwatt powers.
Jpn J Appl Phys,
2002, 41: L450-L451
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=324 nm light emitting diodes with milliwatt powers&author=Chitnis A&author=Zhang J P&author=Adivarahan V&publication_year=2002&journal=Jpn J Appl Phys&volume=41&pages=L450-L451
[34]
Zhang
J P,
Chitnis
A,
Adivarahan
V, et al.
Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm.
Appl Phys Lett,
2002, 81: 4910-4912
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Milliwatt power deep ultraviolet light-emitting diodes over sapphire with emission at 278 nm&author=Zhang J P&author=Chitnis A&author=Adivarahan V&publication_year=2002&journal=Appl Phys Lett&volume=81&pages=4910-4912
[35]
Sun
W H,
Zhang
J P,
Adivarahan
V, et al.
AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1. 5 mW.
Appl Phys Lett,
2004, 85: 531-533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN-based 280 nm light-emitting diodes with continuous wave powers in excess of 1. 5 mW&author=Sun W H&author=Zhang J P&author=Adivarahan V&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=531-533
[36]
Ambacher
O.
Growth and applications of group III-nitrides.
J Phys D-Appl Phys,
1998, 31: 2653
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Growth and applications of group III-nitrides&author=Ambacher O&publication_year=1998&journal=J Phys D-Appl Phys&volume=31&pages=2653
[37]
Zhang
J,
Hu
X,
Lunev
A, et al.
AlGaN deep-ultraviolet light-emitting diodes.
Jpn J Appl Phys,
2005, 44: 7250-7253
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN deep-ultraviolet light-emitting diodes&author=Zhang J&author=Hu X&author=Lunev A&publication_year=2005&journal=Jpn J Appl Phys&volume=44&pages=7250-7253
[38]
Imura
M,
Nakano
K,
Fujimoto
N, et al.
High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio.
Jpn J Appl Phys,
2006, 45: 8639-8643
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio&author=Imura M&author=Nakano K&author=Fujimoto N&publication_year=2006&journal=Jpn J Appl Phys&volume=45&pages=8639-8643
[39]
Imura
M,
Fujimoto
N,
Okada
N, et al.
Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio.
J Cryst Growth,
2007, 300: 136-140
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio&author=Imura M&author=Fujimoto N&author=Okada N&publication_year=2007&journal=J Cryst Growth&volume=300&pages=136-140
[40]
Hirayama
H,
Yatabe
T,
Noguchi
N, et al.
226–273 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire.
Phys Status Solidi C,
2008, 5: 2969-2971
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=226–273 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on multilayer AlN buffers on sapphire&author=Hirayama H&author=Yatabe T&author=Noguchi N&publication_year=2008&journal=Phys Status Solidi C&volume=5&pages=2969-2971
[41]
Hirayama
H,
Yatabe
T,
Noguchi
N, et al.
231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire.
Appl Phys Lett,
2007, 91: 071901
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire&author=Hirayama H&author=Yatabe T&author=Noguchi N&publication_year=2007&journal=Appl Phys Lett&volume=91&pages=071901
[42]
Hirayama
H,
Fujikawa
S,
Noguchi
N, et al.
222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire.
Phys Status Solidi A,
2009, 206: 1176-1182
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire&author=Hirayama H&author=Fujikawa S&author=Noguchi N&publication_year=2009&journal=Phys Status Solidi A&volume=206&pages=1176-1182
[43]
Banal
R G,
Funato
M,
Kawakami
Y.
Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy.
Appl Phys Lett,
2008, 92: 241905
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy&author=Banal R G&author=Funato M&author=Kawakami Y&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=241905
[44]
Banal
R G,
Funato
M,
Kawakami
Y.
Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy.
Phys Status Solidi C,
2010, 7: 2111-2114
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Characteristics of high Al-content AlGaN/AlN quantum wells fabricated by modified migration enhanced epitaxy&author=Banal R G&author=Funato M&author=Kawakami Y&publication_year=2010&journal=Phys Status Solidi C&volume=7&pages=2111-2114
[45]
Chen
Z,
Fareed
R S Q,
Gaevski
M, et al.
Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates.
Appl Phys Lett,
2006, 89: 081905
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates&author=Chen Z&author=Fareed R S Q&author=Gaevski M&publication_year=2006&journal=Appl Phys Lett&volume=89&pages=081905
[46]
Adivarahan
V,
Fareed
Q,
Islam
M, et al.
Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN.
Jpn J Appl Phys,
2007, 46: L877-L879
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN&author=Adivarahan V&author=Fareed Q&author=Islam M&publication_year=2007&journal=Jpn J Appl Phys&volume=46&pages=L877-L879
[47]
Imura
M,
Nakano
K,
Kitano
T, et al.
Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy.
Appl Phys Lett,
2006, 89: 221901
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy&author=Imura M&author=Nakano K&author=Kitano T&publication_year=2006&journal=Appl Phys Lett&volume=89&pages=221901
[48]
Imura
M,
Nakano
K,
Narita
G, et al.
Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers.
J Cryst Growth,
2007, 298: 257-260
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers&author=Imura M&author=Nakano K&author=Narita G&publication_year=2007&journal=J Cryst Growth&volume=298&pages=257-260
[49]
Kim
M,
Fujita
T,
Fukahori
S, et al.
AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates.
Appl Phys Express,
2011, 4: 092102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates&author=Kim M&author=Fujita T&author=Fukahori S&publication_year=2011&journal=Appl Phys Express&volume=4&pages=092102
[50]
Iida
K,
Watanabe
H,
Takeda
K, et al.
High-efficiency AlGaN based UV emitters grown on high-crystalline-quality AlGaN using grooved AlN layer on sapphire substrate.
Phys Status Solidi A,
2007, 204: 2000-2004
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-efficiency AlGaN based UV emitters grown on high-crystalline-quality AlGaN using grooved AlN layer on sapphire substrate&author=Iida K&author=Watanabe H&author=Takeda K&publication_year=2007&journal=Phys Status Solidi A&volume=204&pages=2000-2004
[51]
Tsuzuki
H,
Mori
F,
Takeda
K, et al.
Novel UV devices on high-quality AlGaN using grooved underlying layer.
J Cryst Growth,
2009, 311: 2860-2863
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Novel UV devices on high-quality AlGaN using grooved underlying layer&author=Tsuzuki H&author=Mori F&author=Takeda K&publication_year=2009&journal=J Cryst Growth&volume=311&pages=2860-2863
[52]
Jain
R,
Sun
W,
Yang
J, et al.
Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes.
Appl Phys Lett,
2008, 93: 051113
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes&author=Jain R&author=Sun W&author=Yang J&publication_year=2008&journal=Appl Phys Lett&volume=93&pages=051113
[53]
Shur
M S,
Gaska
R.
Deep-ultraviolet light-emitting diodes.
IEEE Trans Electr Dev,
2010, 57: 12-25
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep-ultraviolet light-emitting diodes&author=Shur M S&author=Gaska R&publication_year=2010&journal=IEEE Trans Electr Dev&volume=57&pages=12-25
[54]
Hirayama
H,
Norimatsu
J,
Noguchi
N, et al.
Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates.
Phys Status Solidi C,
2009, 6: S474-S477
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Milliwatt power 270 nm-band AlGaN deep-UV LEDs fabricated on ELO-AlN templates&author=Hirayama H&author=Norimatsu J&author=Noguchi N&publication_year=2009&journal=Phys Status Solidi C&volume=6&pages=S474-S477
[55]
Yan
J,
Wang
J,
Liu
N, et al.
High quality AlGaN grown on a high temperature AlN template by MOCVD.
J Semicond,
2009, 10: 103001
Google Scholar
http://scholar.google.com/scholar_lookup?title=High quality AlGaN grown on a high temperature AlN template by MOCVD&author=Yan J&author=Wang J&author=Liu N&publication_year=2009&journal=J Semicond&volume=10&pages=103001
[56]
Dong
P,
Yan
J,
Zhang
Y, et al.
AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency.
J Cryst Growth,
2014, 395: 9-13
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency&author=Dong P&author=Yan J&author=Zhang Y&publication_year=2014&journal=J Cryst Growth&volume=395&pages=9-13
[57]
Zhang
J P,
Wang
H M,
Sun
W H, et al.
High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes.
J Electron Mater,
2003, 32: 364-370
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-quality AlGaN layers over pulsed atomic-layer epitaxially grown AlN templates for deep ultraviolet light-emitting diodes&author=Zhang J P&author=Wang H M&author=Sun W H&publication_year=2003&journal=J Electron Mater&volume=32&pages=364-370
[58]
Cantu
P,
Keller
S,
Mishra
U, et al.
Metalorganic chemical vapor deposition of highly conductive Al0. 65Ga0. 35N films.
Appl Phys Lett,
2003, 82: 3683-3685
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Metalorganic chemical vapor deposition of highly conductive Al0. 65Ga0. 35N films&author=Cantu P&author=Keller S&author=Mishra U&publication_year=2003&journal=Appl Phys Lett&volume=82&pages=3683-3685
[59]
Nakarmi
M,
Kim
K,
Zhu
K, et al.
Transport properties of highly conductive n-type Al-rich AlxGa1?xN (x≥0. 7).
Appl Phys Lett,
2004, 85: 3769-3771
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transport properties of highly conductive n-type Al-rich AlxGa1?xN (x≥0. 7)&author=Nakarmi M&author=Kim K&author=Zhu K&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=3769-3771
[60]
Zhu
K,
Nakarmi
M,
Kim
K, et al.
Silicon doping dependence of highly conductive n-type Al0. 7Ga0. 3N.
Appl Phys Lett,
2004, 85: 4669-4671
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon doping dependence of highly conductive n-type Al0. 7Ga0. 3N&author=Zhu K&author=Nakarmi M&author=Kim K&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=4669-4671
[61]
Taniyasu
Y,
Kasu
M,
Makimoto
T.
Electrical conduction properties of n-type Si-doped AlN with high electron mobility (? 100 cm 2 V?1s?1).
Appl Phys Lett,
2004, 85: 4672-4674
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrical conduction properties of n-type Si-doped AlN with high electron mobility (? 100 cm 2 V?1s?1)&author=Taniyasu Y&author=Kasu M&author=Makimoto T&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=4672-4674
[62]
Hwang
J,
Schaff
W J,
Eastman
L F, et al.
Si doping of high-Al-mole fraction AlxGa1-xN alloys with rf plasma-induced molecular- beam-epitaxy.
Appl Phys Lett,
2002, 81: 5192-5194
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Si doping of high-Al-mole fraction AlxGa1-xN alloys with rf plasma-induced molecular- beam-epitaxy&author=Hwang J&author=Schaff W J&author=Eastman L F&publication_year=2002&journal=Appl Phys Lett&volume=81&pages=5192-5194
[63]
Li
Y,
Chen
S,
Kong
M, et al.
Defect reduction in Si-doped Al0. 45Ga0. 55N films by SiNx interlayer method.
J Appl Phys,
2014, 115: 043503
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Defect reduction in Si-doped Al0. 45Ga0. 55N films by SiNx interlayer method&author=Li Y&author=Chen S&author=Kong M&publication_year=2014&journal=J Appl Phys&volume=115&pages=043503
[64]
Kim
K H,
Li
J,
Jin
S X, et al.
III-nitride ultraviolet light-emitting diodes with delta doping.
Appl Phys Lett,
2003, 83: 566-568
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=III-nitride ultraviolet light-emitting diodes with delta doping&author=Kim K H&author=Li J&author=Jin S X&publication_year=2003&journal=Appl Phys Lett&volume=83&pages=566-568
[65]
Collazo
R,
Mita
S,
Xie
J, et al.
Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications.
Phys Status Solidi C,
2011, 8: 2031-2033
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications&author=Collazo R&author=Mita S&author=Xie J&publication_year=2011&journal=Phys Status Solidi C&volume=8&pages=2031-2033
[66]
Katsuragawa
M,
Sota
S,
Komori
M, et al.
Thermal ionization energy of Si and Mg in AlGaN.
J Cryst Growth,
1998, 189: 528-531
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal ionization energy of Si and Mg in AlGaN&author=Katsuragawa M&author=Sota S&author=Komori M&publication_year=1998&journal=J Cryst Growth&volume=189&pages=528-531
[67]
Jeon S-R
,
Ren
Z,
Cui
G, et al.
Investigation of Mg doping in high-Al content p-type AlxGa1?xN (0. 3? x? 0. 5).
Appl Phys Lett,
2005, 86: 082107
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Investigation of Mg doping in high-Al content p-type AlxGa1?xN (0. 3? x? 0. 5)&author=Jeon S-R &author=Ren Z&author=Cui G&publication_year=2005&journal=Appl Phys Lett&volume=86&pages=082107
[68]
Nakarmi
M L,
Kim
K H,
Li
J, et al.
Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping.
Appl Phys Lett,
2003, 82: 3041-3403
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping&author=Nakarmi M L&author=Kim K H&author=Li J&publication_year=2003&journal=Appl Phys Lett&volume=82&pages=3041-3403
[69]
Kozodoy
P,
Smorchkova
Y P,
Hansen
M, et al.
Polarization-enhanced Mg doping of AlGaN/GaN superlattices.
Appl Phys Lett,
1999, 75: 2444-2446
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polarization-enhanced Mg doping of AlGaN/GaN superlattices&author=Kozodoy P&author=Smorchkova Y P&author=Hansen M&publication_year=1999&journal=Appl Phys Lett&volume=75&pages=2444-2446
[70]
Kozodoy
P,
Hansen
M,
DenBaars
S P, et al.
Enhanced Mg doping efficiency in Al0. 2Ga0. 8N/GaN superlattices.
Appl Phys Lett,
1999, 74: 3681-3683
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced Mg doping efficiency in Al0. 2Ga0. 8N/GaN superlattices&author=Kozodoy P&author=Hansen M&author=DenBaars S P&publication_year=1999&journal=Appl Phys Lett&volume=74&pages=3681-3683
[71]
Waldron
E L,
Graff
J W,
Schubert
E F.
Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices.
Appl Phys Lett,
2001, 79: 2737-2739
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices&author=Waldron E L&author=Graff J W&author=Schubert E F&publication_year=2001&journal=Appl Phys Lett&volume=79&pages=2737-2739
[72]
Wang
L,
Li
R,
Li
D, et al.
Strain modulation-enhanced Mg acceptor activation efficiency of Al0. 14Ga0. 86N/GaN superlattices with AlN interlayer.
Appl Phys Lett,
2010, 96: 061110
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strain modulation-enhanced Mg acceptor activation efficiency of Al0. 14Ga0. 86N/GaN superlattices with AlN interlayer&author=Wang L&author=Li R&author=Li D&publication_year=2010&journal=Appl Phys Lett&volume=96&pages=061110
[73]
Simon
J,
Cao
Y,
Jena
D.
Short-period AlN/GaN p-type superlattices: hole transport use in p-n junctions.
Phys Status Solidi C,
2010, 7: 2386-2389
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short-period AlN/GaN p-type superlattices: hole transport use in p-n junctions&author=Simon J&author=Cao Y&author=Jena D&publication_year=2010&journal=Phys Status Solidi C&volume=7&pages=2386-2389
[74]
Cheng
B,
Choi
S,
Northrup
J E, et al.
Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters.
Appl Phys Lett,
2013, 102: 231106
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters&author=Cheng B&author=Choi S&author=Northrup J E&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=231106
[75]
Li
J,
Yang
W,
Li
S, et al.
Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-?-codoped AlxGa1?xN/AlyGa1?yN superlattices.
Appl Phys Lett,
2009, 95: 151113
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-?-codoped AlxGa1?xN/AlyGa1?yN superlattices&author=Li J&author=Yang W&author=Li S&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=151113
[76]
Simon
J,
Protasenko
V,
Lian
C, et al.
Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures.
Science,
2010, 327: 60-64
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures&author=Simon J&author=Protasenko V&author=Lian C&publication_year=2010&journal=Science&volume=327&pages=60-64
[77]
Zhang
L,
Ding
K,
Yan
J C, et al.
Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure.
Appl Phys Lett,
2010, 97: 062103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional hole gas induced by polarization in (0001)-oriented metal-face III-nitride structure&author=Zhang L&author=Ding K&author=Yan J C&publication_year=2010&journal=Appl Phys Lett&volume=97&pages=062103
[78]
Zhang
L,
Ding
K,
Liu
N X, et al.
Theoretical study of polarization-doped GaN-based light-emitting diodes.
Appl Phys Lett,
2011, 98: 101110
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Theoretical study of polarization-doped GaN-based light-emitting diodes&author=Zhang L&author=Ding K&author=Liu N X&publication_year=2011&journal=Appl Phys Lett&volume=98&pages=101110
[79]
Aoyagi
Y,
Takeuchi
M,
Iwai
S, et al.
High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition.
Appl Phys Lett,
2011, 99: 112110
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition&author=Aoyagi Y&author=Takeuchi M&author=Iwai S&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=112110
[80]
Kinoshita
T,
Obata
T,
Yanagi
H, et al.
High p-type conduction in high-Al content Mg-doped AlGaN.
Appl Phys Lett,
2013, 102: 012105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High p-type conduction in high-Al content Mg-doped AlGaN&author=Kinoshita T&author=Obata T&author=Yanagi H&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=012105
[81]
Nakarmi
M,
Kim
K,
Khizar
M, et al.
Electrical and optical properties of Mg-doped Al0. 7Ga0. 3N alloys.
Appl Phys Lett,
2005, 86: 092108
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrical and optical properties of Mg-doped Al0. 7Ga0. 3N alloys&author=Nakarmi M&author=Kim K&author=Khizar M&publication_year=2005&journal=Appl Phys Lett&volume=86&pages=092108
[82]
Kawanishi
H,
Tomizawa
T.
Carbon-doped p-type (0001) plane AlGaN (Al= 6-55%) with high hole density.
Phys Status Solidi B,
2012, 249: 459-463
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon-doped p-type (0001) plane AlGaN (Al= 6-55%) with high hole density&author=Kawanishi H&author=Tomizawa T&publication_year=2012&journal=Phys Status Solidi B&volume=249&pages=459-463
[83]
Li
S,
Zhang
T,
Wu
J, et al.
Polarization induced hole doping in graded AlxGa1?xN (x=0. 7~1) layer grown by molecular beam epitaxy.
Appl Phys Lett,
2013, 102: 062108
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Polarization induced hole doping in graded AlxGa1?xN (x=0. 7~1) layer grown by molecular beam epitaxy&author=Li S&author=Zhang T&author=Wu J&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=062108
[84]
Marcinkevicius
S,
Pinos
A,
Liu
K, et al.
Intrinsic electric fields in AlGaN quantum wells.
Appl Phys Lett,
2007, 90: 081914
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Intrinsic electric fields in AlGaN quantum wells&author=Marcinkevicius S&author=Pinos A&author=Liu K&publication_year=2007&journal=Appl Phys Lett&volume=90&pages=081914
[85]
Murotani
H,
Saito
T,
Kato
N, et al.
Localization-induced inhomogeneous screening of internal electric fields in AlGaN-based quantum wells.
Appl Phys Lett,
2007, 91: 231910
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Localization-induced inhomogeneous screening of internal electric fields in AlGaN-based quantum wells&author=Murotani H&author=Saito T&author=Kato N&publication_year=2007&journal=Appl Phys Lett&volume=91&pages=231910
[86]
Shatalov
M,
Yang
J,
Sun
W, et al.
Efficiency of light emission in high aluminum content AlGaN quantum wells.
J Appl Phys,
2009, 105: 073103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficiency of light emission in high aluminum content AlGaN quantum wells&author=Shatalov M&author=Yang J&author=Sun W&publication_year=2009&journal=J Appl Phys&volume=105&pages=073103
[87]
Banal
R G,
Funato
M,
Kawakami
Y.
Extremely high internal quantum efficiencies from AlGaN/AlN quantum wells emitting in the deep ultraviolet spectral region.
Appl Phys Lett,
2011, 99: 011902
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extremely high internal quantum efficiencies from AlGaN/AlN quantum wells emitting in the deep ultraviolet spectral region&author=Banal R G&author=Funato M&author=Kawakami Y&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=011902
[88]
Bhattacharyya
A,
Moustakas
T,
Zhou
L, et al.
Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency.
Appl Phys Lett,
2009, 94: 181907
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency&author=Bhattacharyya A&author=Moustakas T&author=Zhou L&publication_year=2009&journal=Appl Phys Lett&volume=94&pages=181907
[89]
Hirayama
H,
Kinoshita
A,
Yamabi
T, et al.
Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1?x?yN with In-segregation effect.
Appl Phys Lett,
2002, 80: 207-209
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1?x?yN with In-segregation effect&author=Hirayama H&author=Kinoshita A&author=Yamabi T&publication_year=2002&journal=Appl Phys Lett&volume=80&pages=207-209
[90]
Hirayama
H,
Enomoto
Y,
Kinoshita
A, et al.
Room-temperature intense 320 nm band ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells.
Appl Phys Lett,
2002, 80: 1589-1591
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Room-temperature intense 320 nm band ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells&author=Hirayama H&author=Enomoto Y&author=Kinoshita A&publication_year=2002&journal=Appl Phys Lett&volume=80&pages=1589-1591
[91]
Sun
W,
Shatalov
M,
Deng
J, et al.
Efficiency droop in 245–247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power.
Appl Phys Lett,
2010, 96: 061102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficiency droop in 245–247 nm AlGaN light-emitting diodes with continuous wave 2 mW output power&author=Sun W&author=Shatalov M&author=Deng J&publication_year=2010&journal=Appl Phys Lett&volume=96&pages=061102
[92]
Tamulaitis
G,
Mickevi?ius
J,
Kazlauskas
K, et al.
Efficiency droop in high-Al-content AlGaN/AlGaN quantum wells.
Phys Status Solidi C,
2011, 8: 2130-2132
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficiency droop in high-Al-content AlGaN/AlGaN quantum wells&author=Tamulaitis G&author=Mickevi?ius J&author=Kazlauskas K&publication_year=2011&journal=Phys Status Solidi C&volume=8&pages=2130-2132
[93]
Hirayama
H,
Fujikawa
S.
Quaternary InAlGaN quantum-dot ultraviolet light-emitting diode emitting at 335 nm fabricated by anti-surfactant method.
Phys Status Solidi C,
2008, 5: 2312-2315
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quaternary InAlGaN quantum-dot ultraviolet light-emitting diode emitting at 335 nm fabricated by anti-surfactant method&author=Hirayama H&author=Fujikawa S&publication_year=2008&journal=Phys Status Solidi C&volume=5&pages=2312-2315
[94]
Verma
J,
Islam
S M,
Protasenko
V, et al.
Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures.
Appl Phys Lett,
2014, 104: 021105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures&author=Verma J&author=Islam S M&author=Protasenko V&publication_year=2014&journal=Appl Phys Lett&volume=104&pages=021105
[95]
Okamoto
K,
Niki
I,
Shvartser
A, et al.
Surface-plasmon-enhanced light emitters based on InGaN quantum wells.
Nat Mater,
2004, 3: 601-605
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface-plasmon-enhanced light emitters based on InGaN quantum wells&author=Okamoto K&author=Niki I&author=Shvartser A&publication_year=2004&journal=Nat Mater&volume=3&pages=601-605
[96]
Okamoto
K,
Niki
I,
Scherer
A, et al.
Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy.
Appl Phys Lett,
2005, 87: 071102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy&author=Okamoto K&author=Niki I&author=Scherer A&publication_year=2005&journal=Appl Phys Lett&volume=87&pages=071102
[97]
Yeh
D M,
Huang
C F,
Chen
C Y, et al.
Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode.
Appl Phys Lett,
2007, 91: 171103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode&author=Yeh D M&author=Huang C F&author=Chen C Y&publication_year=2007&journal=Appl Phys Lett&volume=91&pages=171103
[98]
Cho
C Y,
Kwon
M K,
Lee
S J, et al.
Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.
Nanotechnology,
2010, 21: 205201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN&author=Cho C Y&author=Kwon M K&author=Lee S J&publication_year=2010&journal=Nanotechnology&volume=21&pages=205201
[99]
Oh
T S,
Jeong
H,
Lee
Y S, et al.
Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster.
Appl Phys Lett,
2009, 95: 111112
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coupling of InGaN/GaN multiquantum-wells photoluminescence to surface plasmons in platinum nanocluster&author=Oh T S&author=Jeong H&author=Lee Y S&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=111112
[100]
Cho
C Y,
Zhang
Y,
Cicek
E, et al.
Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111).
Appl Phys Lett,
2013, 102: 211110
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111)&author=Cho C Y&author=Zhang Y&author=Cicek E&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=211110
[101]
Lin
J,
Mohammadizia
A,
Neogi
A, et al.
Surface plasmon enhanced UV emission in AlGaN/GaN quantum well.
Appl Phys Lett,
2010, 97: 221104
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface plasmon enhanced UV emission in AlGaN/GaN quantum well&author=Lin J&author=Mohammadizia A&author=Neogi A&publication_year=2010&journal=Appl Phys Lett&volume=97&pages=221104
[102]
Gao
N,
Huang
K,
Li
J, et al.
Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells.
Sci Rep,
2012, 2: 5225-5235
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells&author=Gao N&author=Huang K&author=Li J&publication_year=2012&journal=Sci Rep&volume=2&pages=5225-5235
[103]
Hanlon
A,
Pattison
P M,
Kaeding
J F, et al.
292 nm AlGaN single-quantum well light emitting diodes grown on transparent AlN base.
Jpn J Appl Phys,
2003, 42: L628
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=292 nm AlGaN single-quantum well light emitting diodes grown on transparent AlN base&author=Hanlon A&author=Pattison P M&author=Kaeding J F&publication_year=2003&journal=Jpn J Appl Phys&volume=42&pages=L628
[104]
Park
J S,
Fothergill
D W,
Wellenius
P, et al.
Origins of parasitic emissions from 353 nm AlGaN-based ultraviolet light emitting diodes over SiC substrates.
Jpn J Appl Phys,
2006, 45: 4083-4086
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Origins of parasitic emissions from 353 nm AlGaN-based ultraviolet light emitting diodes over SiC substrates&author=Park J S&author=Fothergill D W&author=Wellenius P&publication_year=2006&journal=Jpn J Appl Phys&volume=45&pages=4083-4086
[105]
Park
J S,
Fothergill
D W,
Zhang
X, et al.
Effect of carrier blocking layers on the emission characteristics of AlGaN-based ultraviolet light emitting diodes.
Jpn J Appl Phys,
2005, 44: 7254-7259
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of carrier blocking layers on the emission characteristics of AlGaN-based ultraviolet light emitting diodes&author=Park J S&author=Fothergill D W&author=Zhang X&publication_year=2005&journal=Jpn J Appl Phys&volume=44&pages=7254-7259
[106]
Zhang
J,
Wu
S,
Rai
S, et al.
AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission.
Appl Phys Lett,
2003, 83: 3456-3458
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission&author=Zhang J&author=Wu S&author=Rai S&publication_year=2003&journal=Appl Phys Lett&volume=83&pages=3456-3458
[107]
Fujioka
A,
Misaki
T,
Murayama
T, et al.
Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells.
Appl Phys Express,
2010, 3: 041001
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells&author=Fujioka A&author=Misaki T&author=Murayama T&publication_year=2010&journal=Appl Phys Express&volume=3&pages=041001
[108]
Sumiya
S,
Zhu
Y,
Zhang
J, et al.
AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates.
Jpn J Appl Phys,
2008, 47: 43
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN-based deep ultraviolet light-emitting diodes grown on epitaxial AlN/sapphire templates&author=Sumiya S&author=Zhu Y&author=Zhang J&publication_year=2008&journal=Jpn J Appl Phys&volume=47&pages=43
[109]
Hirayama
H,
Tsukada
Y,
Maeda
T, et al.
Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer.
Appl Phys Express,
2010, 3: 031002
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer&author=Hirayama H&author=Tsukada Y&author=Maeda T&publication_year=2010&journal=Appl Phys Express&volume=3&pages=031002
[110]
Yan
J,
Wang
J,
Cong
P, et al.
Improved performance of UV-LED by p-AlGaN with graded composition.
Phys Status Solidi C,
2011, 8: 461-463
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved performance of UV-LED by p-AlGaN with graded composition&author=Yan J&author=Wang J&author=Cong P&publication_year=2011&journal=Phys Status Solidi C&volume=8&pages=461-463
[111]
Mehnke
F,
Kuhn
C,
Guttmann
M, et al.
Efficient charge carrier injection into sub–250?nm AlGaN multiple quantum well light emitting diodes.
Appl Phys Lett,
2014, 105: 051113
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient charge carrier injection into sub–250?nm AlGaN multiple quantum well light emitting diodes&author=Mehnke F&author=Kuhn C&author=Guttmann M&publication_year=2014&journal=Appl Phys Lett&volume=105&pages=051113
[112]
Fan
Z,
Mohammad
S N,
Kim
W, et al.
Very low resistance multilayer Ohmic contact to n-GaN.
Appl Phys Lett,
1996, 68: 1672-1674
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Very low resistance multilayer Ohmic contact to n-GaN&author=Fan Z&author=Mohammad S N&author=Kim W&publication_year=1996&journal=Appl Phys Lett&volume=68&pages=1672-1674
[113]
Mohammad
S N,
Fan
Z,
Botchkarev
A, et al.
Near-ideal platinum-GaN Schottky diodes.
Electron Lett,
1996, 32: 598-599
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Near-ideal platinum-GaN Schottky diodes&author=Mohammad S N&author=Fan Z&author=Botchkarev A&publication_year=1996&journal=Electron Lett&volume=32&pages=598-599
[114]
Ruvimov
S,
Liliental-Weber
Z,
Washburn
J, et al.
Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN.
Appl Phys Lett,
1996, 69: 1556-1558
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN&author=Ruvimov S&author=Liliental-Weber Z&author=Washburn J&publication_year=1996&journal=Appl Phys Lett&volume=69&pages=1556-1558
[115]
Suzue
K,
Mohammad
S N,
Fan
Z, et al.
Electrical conduction in platinum-gallium nitride Schottky diodes.
J Appl Phys,
1996, 80: 4467-4478
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrical conduction in platinum-gallium nitride Schottky diodes&author=Suzue K&author=Mohammad S N&author=Fan Z&publication_year=1996&journal=J Appl Phys&volume=80&pages=4467-4478
[116]
Lee
C T,
Kao H-W
.
Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN.
Appl Phys Lett,
2000, 76: 2364-2366
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN&author=Lee C T&author=Kao H-W &publication_year=2000&journal=Appl Phys Lett&volume=76&pages=2364-2366
[117]
Chor
E,
Zhang
D,
Gong
H, et al.
Electrical characterization and metallurgical analysis of Pd-containing multilayer contacts on GaN.
J Appl Phys,
2001, 90: 1242-1249
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrical characterization and metallurgical analysis of Pd-containing multilayer contacts on GaN&author=Chor E&author=Zhang D&author=Gong H&publication_year=2001&journal=J Appl Phys&volume=90&pages=1242-1249
[118]
Papanicolaou
N,
Rao
M,
Mittereder
J, et al.
Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type GaN formed by vacuum annealing.
J Vac Sci Technol B,
2001, 19: 261-267
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reliable Ti/Al and Ti/Al/Ni/Au ohmic contacts to n-type GaN formed by vacuum annealing&author=Papanicolaou N&author=Rao M&author=Mittereder J&publication_year=2001&journal=J Vac Sci Technol B&volume=19&pages=261-267
[119]
Wang
D F,
Shiwei
F,
Lu
C, et al.
Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN.
J Appl Phys,
2001, 89: 6214-6217
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN&author=Wang D F&author=Shiwei F&author=Lu C&publication_year=2001&journal=J Appl Phys&volume=89&pages=6214-6217
[120]
Zhao
M Z,
Jiang
R L,
Chen
P, et al.
Ti/Al/Pt/Au and Al ohmic contacts on Si-substrated GaN.
Appl Phys Lett,
2001, 79: 218-220
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ti/Al/Pt/Au and Al ohmic contacts on Si-substrated GaN&author=Zhao M Z&author=Jiang R L&author=Chen P&publication_year=2001&journal=Appl Phys Lett&volume=79&pages=218-220
[121]
Kumar
V,
Zhou
L,
Selvanathan
D, et al.
Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n-GaN.
J Appl Phys,
2002, 92: 1712-1714
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n-GaN&author=Kumar V&author=Zhou L&author=Selvanathan D&publication_year=2002&journal=J Appl Phys&volume=92&pages=1712-1714
[122]
Lu
C,
Chen
H,
Lv
X, et al.
Temperature and doping-dependent resistivity of Ti/Au/Pd/Au multilayer ohmic contact to n-GaN.
J Appl Phys,
2002, 91: 9218-9224
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Temperature and doping-dependent resistivity of Ti/Au/Pd/Au multilayer ohmic contact to n-GaN&author=Lu C&author=Chen H&author=Lv X&publication_year=2002&journal=J Appl Phys&volume=91&pages=9218-9224
[123]
Motayed
A,
Davydov
A V,
Bendersky
L A, et al.
High-transparency Ni/Au bilayer contacts to n-type GaN.
J Appl Phys,
2002, 92: 5218-5227
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-transparency Ni/Au bilayer contacts to n-type GaN&author=Motayed A&author=Davydov A V&author=Bendersky L A&publication_year=2002&journal=J Appl Phys&volume=92&pages=5218-5227
[124]
Schweitz
K,
Wang
P,
Mohney
S, et al.
V/Al/Pt/Au ohmic contact to n-AlGaN/GaN heterostructures.
Appl Phys Lett,
2002, 80: 1954-1956
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=V/Al/Pt/Au ohmic contact to n-AlGaN/GaN heterostructures&author=Schweitz K&author=Wang P&author=Mohney S&publication_year=2002&journal=Appl Phys Lett&volume=80&pages=1954-1956
[125]
Motayed
A,
Bathe
R,
Wood
M C, et al.
Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN.
J Appl Phys,
2003, 93: 1087-1094
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN&author=Motayed A&author=Bathe R&author=Wood M C&publication_year=2003&journal=J Appl Phys&volume=93&pages=1087-1094
[126]
Zakharov
D,
Liliental-Weber
Z,
Motayed
A, et al.
TEM studies and contact resistance of Au/Ni/Ti/Ta/n-GaN ohmic contacts. In: MRS Proceedings.
Cambridge:
Cambridge University Press.
2003,
Google Scholar
http://scholar.google.com/scholar_lookup?title=TEM studies and contact resistance of Au/Ni/Ti/Ta/n-GaN ohmic contacts. In: MRS Proceedings&author=Zakharov D&author=Liliental-Weber Z&author=Motayed A&publication_year=2003&
[127]
Mohammad
S N.
Contact mechanisms and design principles for nonalloyed ohmic contacts to n-GaN.
J Appl Phys,
2004, 95: 4856-4865
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Contact mechanisms and design principles for nonalloyed ohmic contacts to n-GaN&author=Mohammad S N&publication_year=2004&journal=J Appl Phys&volume=95&pages=4856-4865
[128]
Motayed
A,
Jah
M,
Sharma
A, et al.
Two-step surface treatment technique: Realization of nonalloyed low-resistance Ti/Al/Ti/Au ohmic contact to n-GaN.
J Vac Sci Technol B,
2004, 22: 663-667
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-step surface treatment technique: Realization of nonalloyed low-resistance Ti/Al/Ti/Au ohmic contact to n-GaN&author=Motayed A&author=Jah M&author=Sharma A&publication_year=2004&journal=J Vac Sci Technol B&volume=22&pages=663-667
[129]
Motayed
A,
Jones
K A,
Derenge
M A, et al.
Electrical, microstructural, and thermal stability characteristics of Ta/Ti/Ni/Au contacts to n-GaN.
J Appl Phys,
2004, 95: 1516-1524
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electrical, microstructural, and thermal stability characteristics of Ta/Ti/Ni/Au contacts to n-GaN&author=Motayed A&author=Jones K A&author=Derenge M A&publication_year=2004&journal=J Appl Phys&volume=95&pages=1516-1524
[130]
Srivastava
S,
Hwang
S M,
Islam
M, et al.
Ohmic contact to high-aluminum-content AlGaN epilayers.
J Electron Mater,
2009, 38: 2348-2352
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ohmic contact to high-aluminum-content AlGaN epilayers&author=Srivastava S&author=Hwang S M&author=Islam M&publication_year=2009&journal=J Electron Mater&volume=38&pages=2348-2352
[131]
France
R,
Xu
T,
Chen
P, et al.
Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition.
Appl Phys Lett,
2007, 90: 062115
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition&author=France R&author=Xu T&author=Chen P&publication_year=2007&journal=Appl Phys Lett&volume=90&pages=062115
[132]
Shatalov
M,
Sun
W,
Lunev
A, et al.
AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%.
Appl Phys Express,
2012, 5: 082101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%&author=Shatalov M&author=Sun W&author=Lunev A&publication_year=2012&journal=Appl Phys Express&volume=5&pages=082101
[133]
Kneissl
M,
Kolbe
T,
Chua
C, et al.
Advances in group III-nitride-based deep UV light-emitting diode technology.
Semicond Sci Tech,
2011, 26: 014036
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Advances in group III-nitride-based deep UV light-emitting diode technology&author=Kneissl M&author=Kolbe T&author=Chua C&publication_year=2011&journal=Semicond Sci Tech&volume=26&pages=014036
[134]
Dong
P,
Yan
J,
Wang
J, et al.
282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates.
Appl Phys Lett,
2013, 102: 241113
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates&author=Dong P&author=Yan J&author=Wang J&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=241113
[135]
Oder
T,
Kim
K,
Lin
J, et al.
III-nitride blue and ultraviolet photonic crystal light emitting diodes.
Appl Phys Lett,
2004, 84: 466-468
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=III-nitride blue and ultraviolet photonic crystal light emitting diodes&author=Oder T&author=Kim K&author=Lin J&publication_year=2004&journal=Appl Phys Lett&volume=84&pages=466-468
[136]
Zhou
L,
Epler
J E,
Krames
M R, et al.
Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes.
Appl Phys Lett,
2006, 89: 241113
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes&author=Zhou L&author=Epler J E&author=Krames M R&publication_year=2006&journal=Appl Phys Lett&volume=89&pages=241113
[137]
Khizar
M,
Fan
Z Y,
Kim
K H, et al.
Nitride deep-ultraviolet light-emitting diodes with microlens array.
Appl Phys Lett,
2005, 2: 173504
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nitride deep-ultraviolet light-emitting diodes with microlens array&author=Khizar M&author=Fan Z Y&author=Kim K H&publication_year=2005&journal=Appl Phys Lett&volume=2&pages=173504
[138]
Pernot
C,
Kim
M,
Fukahori
S, et al.
Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes.
Appl Phys Express,
2010, 3: 061004
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes&author=Pernot C&author=Kim M&author=Fukahori S&publication_year=2010&journal=Appl Phys Express&volume=3&pages=061004
[139]
Inazu
T,
Fukahori
S,
Pernot
C, et al.
Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes.
Jpn J Appl Phys,
2011, 50: 122101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes&author=Inazu T&author=Fukahori S&author=Pernot C&publication_year=2011&journal=Jpn J Appl Phys&volume=50&pages=122101
[140]
Kolbe
T,
Knauer
A,
Chua
C, et al.
Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes.
Appl Phys Lett,
2010, 97: 171105
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes&author=Kolbe T&author=Knauer A&author=Chua C&publication_year=2010&journal=Appl Phys Lett&volume=97&pages=171105
[141]
Nam
K B,
Li
J,
Nakarmi
M L, et al.
Unique optical properties of AlGaN alloys and related ultraviolet emitters.
Appl Phys Lett,
2004, 84: 5264-5266
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Unique optical properties of AlGaN alloys and related ultraviolet emitters&author=Nam K B&author=Li J&author=Nakarmi M L&publication_year=2004&journal=Appl Phys Lett&volume=84&pages=5264-5266
[142]
Ryu
H Y,
Choi I-G
,
Choi H-S
, et al.
Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes.
Appl Phys Express,
2013, 6: 062101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes&author=Ryu H Y&author=Choi I-G &author=Choi H-S &publication_year=2013&journal=Appl Phys Express&volume=6&pages=062101
[143]
Hou
M,
Qin
Z,
He
C, et al.
Effect of injection current on the optical polarization of AlGaN-based ultraviolet light-emitting diodes.
Opt Express,
2014, 22: 19589
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of injection current on the optical polarization of AlGaN-based ultraviolet light-emitting diodes&author=Hou M&author=Qin Z&author=He C&publication_year=2014&journal=Opt Express&volume=22&pages=19589
[144]
Ryu H-Y
.
Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.
Nanoscale Res Lett,
2014, 9: 1-7
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures&author=Ryu H-Y &publication_year=2014&journal=Nanoscale Res Lett&volume=9&pages=1-7
[145]
Nishida
T,
Saito
H,
Kobayashi
N.
Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN.
Appl Phys Lett,
2001, 79: 711-712
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN&author=Nishida T&author=Saito H&author=Kobayashi N&publication_year=2001&journal=Appl Phys Lett&volume=79&pages=711-712
[146]
Akita
K,
Nakamura
T,
Hirayama
H.
Advantages of gan substrates in InAlGan quaternary ultraviolet-light-emitting diodes.
Jpn J Appl Phys,
2004, 43: 8030-8031
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Advantages of gan substrates in InAlGan quaternary ultraviolet-light-emitting diodes&author=Akita K&author=Nakamura T&author=Hirayama H&publication_year=2004&journal=Jpn J Appl Phys&volume=43&pages=8030-8031
[147]
Hirayama
H,
Akita
K,
Kyono
T, et al.
High-efficiency 352 nm quaternary InAlGaN-based ultraviolet light-emitting diodes grown on GaN substrates.
Jpn J Appl Phys,
2004, 43: L1241
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-efficiency 352 nm quaternary InAlGaN-based ultraviolet light-emitting diodes grown on GaN substrates&author=Hirayama H&author=Akita K&author=Kyono T&publication_year=2004&journal=Jpn J Appl Phys&volume=43&pages=L1241
[148]
Yasan
A,
McClintock
R,
Mayes
K, et al.
Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire.
Appl Phys Lett,
2002, 81: 2151-2153
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Comparison of ultraviolet light-emitting diodes with peak emission at 340 nm grown on GaN substrate and sapphire&author=Yasan A&author=McClintock R&author=Mayes K&publication_year=2002&journal=Appl Phys Lett&volume=81&pages=2151-2153
[149]
Slack
G.
AlN single crystals.
J Cryst Growth,
1977, 42: 560-563
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlN single crystals&author=Slack G&publication_year=1977&journal=J Cryst Growth&volume=42&pages=560-563
[150]
Bondokov
R T,
Mueller
S G,
Morgan
K E, et al.
Large-area AlN substrates for electronic applications: An industrial perspective.
J Cryst Growth,
2008, 310: 4020-4026
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-area AlN substrates for electronic applications: An industrial perspective&author=Bondokov R T&author=Mueller S G&author=Morgan K E&publication_year=2008&journal=J Cryst Growth&volume=310&pages=4020-4026
[151]
Herro
Z,
Zhuang
D,
Schlesser
R, et al.
Growth of AlN single crystalline boules.
J Cryst Growth,
2010, 312: 2519-2521
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Growth of AlN single crystalline boules&author=Herro Z&author=Zhuang D&author=Schlesser R&publication_year=2010&journal=J Cryst Growth&volume=312&pages=2519-2521
[152]
Sumathi
R R,
Gille
P.
Development and progress in bulk c-plane AlN single-crystalline template growth for large-area native seeds.
Jpn J Appl Phys,
2013, 52: 08JA02
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Development and progress in bulk c-plane AlN single-crystalline template growth for large-area native seeds&author=Sumathi R R&author=Gille P&publication_year=2013&journal=Jpn J Appl Phys&volume=52&pages=08JA02
[153]
Hartmann
C,
Dittmar
A,
Wollweber
J, et al.
Bulk AlN growth by physical vapour transport.
Semicond Sci Technol,
2014, 29: 084002
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bulk AlN growth by physical vapour transport&author=Hartmann C&author=Dittmar A&author=Wollweber J&publication_year=2014&journal=Semicond Sci Technol&volume=29&pages=084002
[154]
Grandusky
J R,
Chen
J,
Mendrick
M C, et al.
Improved efficiency high power 260 nm pseudomorphic ultraviolet light emitting diodes.
In:
Lester Eastman Conference on High Performance Devices (LEC).
2012, 2012: 1-2
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved efficiency high power 260 nm pseudomorphic ultraviolet light emitting diodes&author=Grandusky J R&author=Chen J&author=Mendrick M C&publication_year=2012&volume=2012&pages=1-2
[155]
Grandusky
J R,
Chen
J,
Gibb
S R, et al.
270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power.
Appl Phys Express,
2013, 6: 032101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power&author=Grandusky J R&author=Chen J&author=Gibb S R&publication_year=2013&journal=Appl Phys Express&volume=6&pages=032101
[156]
Kumagai
Y,
Kubota
Y,
Nagashima
T, et al.
Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport.
Appl Phys Express,
2012, 5: 055504
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport&author=Kumagai Y&author=Kubota Y&author=Nagashima T&publication_year=2012&journal=Appl Phys Express&volume=5&pages=055504
[157]
Kinoshita
T,
Hironaka
K,
Obata
T, et al.
Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy.
Appl Phys Express,
2012, 5: 122101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy&author=Kinoshita T&author=Hironaka K&author=Obata T&publication_year=2012&journal=Appl Phys Express&volume=5&pages=122101
[158]
Kinoshita
T,
Obata
T,
Nagashima
T, et al.
Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy.
Appl Phys Express,
2013, 6: 092103
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy&author=Kinoshita T&author=Obata T&author=Nagashima T&publication_year=2013&journal=Appl Phys Express&volume=6&pages=092103
[159]
Kinoshita
T,
Hironaka
K,
Obata
T, et al.
Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy.
Appl Phys Express,
2012, 5: 122101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy&author=Kinoshita T&author=Hironaka K&author=Obata T&publication_year=2012&journal=Appl Phys Express&volume=5&pages=122101
[160]
Sawyer
S,
Rumyantsev
S L,
Shur
M S.
Degradation of AlGaN-based ultraviolet light emitting diodes.
Solid-State Electron,
2008, 52: 968-972
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Degradation of AlGaN-based ultraviolet light emitting diodes&author=Sawyer S&author=Rumyantsev S L&author=Shur M S&publication_year=2008&journal=Solid-State Electron&volume=52&pages=968-972
[161]
161 Shatalov M, Bilenko Y, Gaska R, et al. Reliability of deep UV LEDs. OSA/CLEO/IQEC, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=161 Shatalov M, Bilenko Y, Gaska R, et al. Reliability of deep UV LEDs. OSA/CLEO/IQEC, 2009&
[162]
Meneghini
M,
Pavesi
M,
Trivelli
N, et al.
Reliability of deep-UV light-emitting diodes.
IEEE Trans Device Mater Rel,
2008, 8: 248-254
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reliability of deep-UV light-emitting diodes&author=Meneghini M&author=Pavesi M&author=Trivelli N&publication_year=2008&journal=IEEE Trans Device Mater Rel&volume=8&pages=248-254
[163]
Moe
C G,
Reed
M L,
Garrett
G A, et al.
Current-induced degradation of high performance deep ultraviolet light emitting diodes.
Appl Phys Lett,
2010, 96: 213512
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Current-induced degradation of high performance deep ultraviolet light emitting diodes&author=Moe C G&author=Reed M L&author=Garrett G A&publication_year=2010&journal=Appl Phys Lett&volume=96&pages=213512
[164]
Pinos
A,
Marcinkevi?ius
S,
Shur
M S.
High current-induced degradation of AlGaN ultraviolet light emitting diodes.
J Appl Phys,
2011, 109: 103108
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High current-induced degradation of AlGaN ultraviolet light emitting diodes&author=Pinos A&author=Marcinkevi?ius S&author=Shur M S&publication_year=2011&journal=J Appl Phys&volume=109&pages=103108
[165]
Gong
Z,
Gaevski
M,
Adivarahan
V, et al.
Optical power degradation mechanisms in AlGaN based 280 nm deep ultraviolet light-emitting diodes on sapphire.
Appl Phys Lett,
2006, 88: 121106
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Optical power degradation mechanisms in AlGaN based 280 nm deep ultraviolet light-emitting diodes on sapphire&author=Gong Z&author=Gaevski M&author=Adivarahan V&publication_year=2006&journal=Appl Phys Lett&volume=88&pages=121106
[166]
Pinos
A,
Marcinkevi?ius
S,
Yang
J, et al.
Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy.
Appl Phys Lett,
2009, 95: 181914
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy&author=Pinos A&author=Marcinkevi?ius S&author=Yang J&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=181914
[167]
Shatalov
M,
Chitnis
A,
Yadav
P, et al.
Thermal analysis of flip-chip packaged 280 nm nitride-based deep ultraviolet light-emitting diodes.
Appl Phys Lett,
2005, 86: 201109
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal analysis of flip-chip packaged 280 nm nitride-based deep ultraviolet light-emitting diodes&author=Shatalov M&author=Chitnis A&author=Yadav P&publication_year=2005&journal=Appl Phys Lett&volume=86&pages=201109
[168]
Bilenko
Y,
Lunev
A,
Hu
X, et al.
10 milliwatt pulse operation of 265 nm AlGaN light emitting diodes.
Jpn J Appl Phys,
2005, 44: L98-L100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=10 milliwatt pulse operation of 265 nm AlGaN light emitting diodes&author=Bilenko Y&author=Lunev A&author=Hu X&publication_year=2005&journal=Jpn J Appl Phys&volume=44&pages=L98-L100
[169]
169 Gaska R, Shur M S, Zhang J. Physics and applications of deep uv LEDs. IEEE, 2006, doi: 10.1109/ICSICT.2006.306525.
Google Scholar
http://scholar.google.com/scholar_lookup?title=169 Gaska R, Shur M S, Zhang J. Physics and applications of deep uv LEDs. IEEE, 2006, doi: 10.1109/ICSICT.2006.306525&
[170]
Fujioka
A,
Asada
K,
Yamada
H, et al.
High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics.
Semicond Sci Technol,
2014, 29: 084005
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics&author=Fujioka A&author=Asada K&author=Yamada H&publication_year=2014&journal=Semicond Sci Technol&volume=29&pages=084005
[171]
Kawasaki
K,
Koike
C,
Aoyagi
Y, et al.
Vertical AlGaN deep ultraviolet light emitting diode emitting at 322 nm fabricated by the laser lift-off technique.
Appl Phys Lett,
2006, 89: 261114
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vertical AlGaN deep ultraviolet light emitting diode emitting at 322 nm fabricated by the laser lift-off technique&author=Kawasaki K&author=Koike C&author=Aoyagi Y&publication_year=2006&journal=Appl Phys Lett&volume=89&pages=261114
[172]
Takeuchi
M,
Maegawa
T,
Shimizu
H, et al.
AlN/AlGaN short-period superlattice sacrificial layers in laser lift-off for vertical-type AlGaN-based deep ultraviolet light emitting diodes.
Appl Phys Lett,
2009, 94: 061117
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=AlN/AlGaN short-period superlattice sacrificial layers in laser lift-off for vertical-type AlGaN-based deep ultraviolet light emitting diodes&author=Takeuchi M&author=Maegawa T&author=Shimizu H&publication_year=2009&journal=Appl Phys Lett&volume=94&pages=061117
[173]
Adivarahan
V,
Heidari
A,
Zhang
B, et al.
Vertical injection thin film deep ultraviolet light emitting diodes with AlGaN multiple-quantum wells active region.
Appl Phys Express,
2009, 2: 092102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vertical injection thin film deep ultraviolet light emitting diodes with AlGaN multiple-quantum wells active region&author=Adivarahan V&author=Heidari A&author=Zhang B&publication_year=2009&journal=Appl Phys Express&volume=2&pages=092102
[174]
Balakrishnan
K,
Adivarahan
V,
Fareed
Q, et al.
First demonstration of semipolar deep ultraviolet light emitting diode on m-plane sapphire with AlGaN multiple quantum wells.
Jpn J Appl Phys,
2010, 49: 040206
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=First demonstration of semipolar deep ultraviolet light emitting diode on m-plane sapphire with AlGaN multiple quantum wells&author=Balakrishnan K&author=Adivarahan V&author=Fareed Q&publication_year=2010&journal=Jpn J Appl Phys&volume=49&pages=040206