Effect of intrinsic defects on p-type conductivityof ZnO:(In, N) thin films

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 4: 047303(2018) https://doi.org/10.1360/SSPMA2017-00271

Effect of intrinsic defects on p-type conductivityof ZnO:(In, N) thin films

More info
  • ReceivedSep 2, 2017
  • AcceptedDec 11, 2017
  • PublishedFeb 11, 2018
PACS numbers

Abstract

Indium and nitrogen co-doped ZnO thin films [ZnO: (In, N)] were prepared on quartz glass substrate by radio frequency magnetron sputtering combined with ion implantation technique. By optimizing the annealing temperature, a repeatable p-type ZnO:(In, N) thin film with the hole concentration about 1016?cm?3 was successfully achieved. Using the Hall effect measurements, the n→p→n electrical transition phenomenon of the films with annealing temperature was observed. Then the effects of doped impurities and intrinsic defects on the structure and p-type conductivity of the films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL) spectroscopy. It was found that the difference of N-related acceptor defects concentration between p-type and n-type ZnO is not prominent. Nevertheless, the content of intrinsic zinc interstitial (Zni) donor defects in p-type ZnO were less than that of n-type one, the intrinsic oxygen interstitial (Oi) and zinc vacancy (VZn) acceptor defects were relatively abundant. The conclusion can be drawn that besides the N-related acceptor defects (NO, InZn-nNO), the intrinsic defects (VZn, Oi, Zni) in the film also play a crucial role in realizing the p-type conductivity. Therefore, how to control the intrinsic defects in ZnO is an important means to realize the p-type transition and to improve p-type conductivity stability of ZnO thin film.


Funded by

国家自然科学基金(批准号:)

重庆教育委员会科学技术研究项目(批准号:)


References

[1] Look D C. Recent advances in ZnO materials and devices. Mater Sci Eng-B, 2001, 80: 383-387 CrossRef Google Scholar

[2] Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett, 1998, 72: 3270-3272 CrossRef ADS Google Scholar

[3] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater, 2004, 4: 42-46 CrossRef ADS Google Scholar

[4] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899 CrossRef PubMed ADS Google Scholar

[5] Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors in ZnO. Phys Rev B, 2001, 64: 085120 CrossRef ADS Google Scholar

[6] Deng B, Guo Z, Sun H. Theoretical study of Fe-doped p-type ZnO. Appl Phys Lett, 2010, 96: 172106 CrossRef ADS Google Scholar

[7] Samanta K, Bhattacharya P, Katiyar R S. Raman scattering studies of p-type Sb-doped ZnO thin films. J Appl Phys, 2010, 108: 113501 CrossRef ADS Google Scholar

[8] Ma Y, Gao Q, Wu G G, et al. Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD. Mater Res Bull, 2013, 48: 1239-1243 CrossRef Google Scholar

[9] Chang Y T, Chen J Y, Yang T P, et al. Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications. Nano Energ, 2014, 8: 291-296 CrossRef Google Scholar

[10] Suja M, Bashar S B, Morshed M M, et al. Realization of Cu-doped p-type ZnO thin films by molecular beam epitaxy. ACS Appl Mater Interfaces, 2015, 7: 8894-8899 CrossRef Google Scholar

[11] Pan X H, Zhou Y S, Chen S S, et al. Effect of Na contents on fabrication of p-type non-polar m-plane ZnO films. J Cryst Growth, 2014, 404: 54-58 CrossRef ADS Google Scholar

[12] Kalyanaraman S, Thangavel R, Vettumperumal R. High mobility formation of p-type Al doped ZnO:N films annealed under NH3 ambient. J Phys Chem Solids, 2013, 74: 504-508 CrossRef ADS Google Scholar

[13] Li W, Kong C, Ruan H, et al. Investigation on the formation mechanism of In-N codoped p-type ZnCdO thin films: Experiment and theory. J Phys Chem C, 2014, 118: 22799-22806 CrossRef Google Scholar

[14] Kim H, Cepler A, Cetina C, et al. Pulsed laser deposition of Zr-N codoped p-type ZnO thin films. Appl Phys A, 2008, 93: 593-598 CrossRef ADS Google Scholar

[15] Zhang B Y, Yao B, Li Y F, et al. Investigation on the formation mechanism of p-type Li-N dual-doped ZnO. Appl Phys Lett, 2010, 97: 222101 CrossRef ADS Google Scholar

[16] Swapna R, Kumar M C S. Deposition of Na-N dual acceptor doped p-type ZnO thin films and fabrication of p-ZnO:(Na, N)/n-ZnO:Eu homojunction. Mater Sci Eng-B, 2013, 178: 1032-1039 CrossRef Google Scholar

[17] Li W, Kong C, Qin G, et al. p-Type conductivity and stability of Ag-N codoped ZnO thin films. J Alloys Compd, 2014, 609: 173-177 CrossRef Google Scholar

[18] Mannam R, Eswaran S K, DasGupta N, et al. Zn-vacancy induced violet emission in p-type phosphorus and nitrogen codoped ZnO thin films grown by pulsed laser deposition. Appl Surf Sci, 2015, 347: 96-100 CrossRef ADS Google Scholar

[19] Liu W W, Yao B, Li Y F, et al. p-Type MgZnO thin films grown using N delta-doping by plasma-assisted molecular beam epitaxy. J Alloys Compd, 2010, 504: 484-487 CrossRef Google Scholar

[20] Chen M, Zhu Y, Ji X, et al. The role of Be incorporation in the modulation of the N doping ZnO. J Alloys Compd, 2015, 622: 719-724 CrossRef Google Scholar

[21] Long S, Li Y, Yao B, et al. Effect of doping behaviors of Ag and S on the formation of p-type Ag-S co-doped ZnO film by a modified hydrothermal method. Thin Solid Films, 2016, 600: 13-18 CrossRef ADS Google Scholar

[22] Pan H L, Yao B, Yang T, et al. Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu. Appl Phys Lett, 2010, 97: 142101 CrossRef ADS Google Scholar

[23] Tang K, Gu S, Wu K, et al. Tellurium assisted realization of p-type N-doped ZnO. Appl Phys Lett, 2010, 96: 242101 CrossRef ADS Google Scholar

[24] Bian J M, Li X M, Gao X D, et al. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl Phys Lett, 2004, 84: 541-543 CrossRef ADS Google Scholar

[25] Zeng Y J, Ye Z Z, Lu J G, et al. Effects of Al content on properties of Al-N codoped ZnO films. Appl Surf Sci, 2005, 249: 203-207 CrossRef ADS Google Scholar

[26] Kumar M, Kim T H, Kim S S, et al. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Appl Phys Lett, 2006, 89: 112103 CrossRef ADS Google Scholar

[27] Li P, Deng S H, Zhang L, et al. Comparisons of ZnO codoped by group IIIA elements (Al, Ga, In) and N: A first-principle study. Chin Phys B, 2010, 19: 117102 CrossRef ADS Google Scholar

[28] Liu Y, Zhang H, Zhang Z, et al. Conversion of p-type to n-type conductivity in undoped ZnO films by increasing operating temperature. Appl Surf Sci, 2010, 257: 1236-1238 CrossRef ADS Google Scholar

[29] Oh M S, Kim S H, Seong T Y. Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition. Appl Phys Lett, 2005, 87: 122103 CrossRef ADS Google Scholar

[30] Zeng Y J, Ye Z Z, Xu W Z, et al. p-Type behavior in nominally undoped ZnO thin films by oxygen plasma growth. Appl Phys Lett, 2006, 88: 262103 CrossRef ADS Google Scholar

[31] Li W J, Kong C Y, Ruan H B, et al. Electrical properties and Raman scattering investigation of Ag doped ZnO thin films. Solid State Commun, 2012, 152: 147-150 CrossRef ADS Google Scholar

[32] Chen X, Zhang Z, Yao B, et al. Effect of compressive stress on stability of N-doped p-type ZnO. Appl Phys Lett, 2011, 99: 091908 CrossRef ADS Google Scholar

[33] Lv J, Liu Y. Spectroscopic evidence that Li doping creates shallow VZn in ZnO. Phys Chem Chem Phys, 2017, 19: 5806-5812 CrossRef PubMed ADS Google Scholar

[34] Yi J B, Lim C C, Xing G Z, et al. Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys Rev Lett, 2010, 104: 137201 CrossRef PubMed ADS Google Scholar

[35] Wan Q X, Xiong Z H, Li D M, et al. Effect of intrinsic defects on Ag doped ZnO (in Chinese). J Synth Cryst, 2009, 38: 1202–1206 [万齐欣, 熊志华, 李冬梅, 等. 本征缺陷对Ag掺杂ZnO的影响. 人工晶体学报, 2009, 38: 1202–1206]. Google Scholar

[36] Liu L, Xu J, Wang D, et al. p-Type conductivity in N-doped ZnO: The role of the N(Zn)-V(O) complex. Phys Rev Lett, 2012, 108: 215501 CrossRef PubMed ADS Google Scholar

[37] Reynolds J G, Reynolds Jr. C L, Mohanta A, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett, 2013, 102: 152114 CrossRef ADS Google Scholar

[38] Yong D Y, He H Y, Tang Z K, et al. H-stabilized shallow acceptors in N-doped ZnO. Phys Rev B, 2015, 92: 235207 CrossRef ADS Google Scholar

[39] van Heerden J L, Swanepoel R. XRD analysis of ZnO thin films prepared by spray pyrolysis. Thin Solid Films, 1997, 299: 72-77 CrossRef ADS Google Scholar

[40] Yang B, Feng P, Kumar A, et al. Structural and optical properties of N-doped ZnO nanorod arrays. J Phys D-Appl Phys, 2009, 42: 195402-195405 CrossRef ADS Google Scholar

[41] Perkins C L, Lee S H, Li X, et al. Identification of nitrogen chemical states in N-doped ZnO via X-ray photoelectron spectroscopy. J Appl Phys, 2005, 97: 034907 CrossRef ADS Google Scholar

[42] Zhang H, Kong C, Li W, et al. Fabrication and characterization of p-type In-N codoped ZnMgO films. J Mater Sci-Mater Electron, 2017, 28: 9316-9321 CrossRef Google Scholar

[43] Li W J, Kong C Y, Qin G P, et al. Raman and photoelectric properties of p type ZnO:N thin films (in Chinese). Sci Sin-Phys Mech Astron, 2012, 42: 819–826 [李万俊, 孔春阳, 秦国平, 等. p型ZnO:N薄膜的拉曼及光电特性研究. 中国科学: 物理学 力学 天文学, 2012, 42: 819–826]. Google Scholar

[44] Major S, Kumar S, Bhatnagar M, et al. Effect of hydrogen plasma treatment on transparent conducting oxides. Appl Phys Lett, 1986, 49: 394-396 CrossRef ADS Google Scholar

[45] Meng L, Zhang J, An J, et al. Stable p-type ZnO thin films on sapphire and n-type 4H-SiC achieved by controlling oxygen pressure using radical-source laser molecular beam epitaxy. Phys Status Solidi A, 2016, 213: 72-78 CrossRef Google Scholar

[46] Zang H, Wang Z G, Pang L L, et al. Raman spectroscopic study of ion implanted ZnO thin films (in Chinese). Acta Phys Sin, 2010, 59: 4831–4836 [臧航, 王志光, 庞立龙, 等. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59: 4831–4836]. Google Scholar

[47] Kaschner A, Haboeck U, Strassburg M, et al. Nitrogen-related local vibrational modes in ZnO:N. Appl Phys Lett, 2002, 80: 1909-1911 CrossRef ADS Google Scholar

[48] Wang J B, Zhong H M, Li Z F, et al. Raman study of N+-implanted ZnO. Appl Phys Lett, 2006, 88: 101913 CrossRef ADS Google Scholar

[49] Artús L, Cuscó R, Alarcón-Lladó E, et al. Isotopic study of the nitrogen-related modes in N+-implanted ZnO. Appl Phys Lett, 2007, 90: 181911 CrossRef ADS Google Scholar

[50] Friedrich F, Gluba M A, Nickel N H. Identification of nitrogen and zinc related vibrational modes in ZnO. Appl Phys Lett, 2009, 95: 141903 CrossRef ADS Google Scholar

[51] Yao Z, Tang K, Ye J, et al. Identification and control of native defects in N-doped ZnO microrods. Opt Mater Express, 2016, 6: 2847-2856 CrossRef Google Scholar

[52] Gluba M A, Nickel N H, Karpensky N. Interstitial zinc clusters in zinc oxide. Phys Rev B, 2013, 88: 142-146 CrossRef ADS Google Scholar

[53] Li W, Fang L, Qin G, et al. Tunable zinc interstitial related defects in ZnMgO and ZnCdO films. J Appl Phys, 2015, 117: 145301 CrossRef ADS Google Scholar

[54] Zhang P, Kong C, Li W, et al. The origin of the ~274 cm?1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films. Appl Surf Sci, 2015, 327: 154-158 CrossRef ADS Google Scholar

[55] Yang C C, Lin C C, Peng C H, et al. Effect of annealing atmosphere on physical characteristics and photoluminescence properties of nitrogen-implanted ZnO thin films. J Cryst Growth, 2005, 285: 96-102 CrossRef ADS Google Scholar

[56] Zhong Z, Sun L J, Xu X Q, et al. Effect of high temperature annealing on luminescent properties of ZnO thin films in a nitrogen atmosphere (in Chinese). Chin J Lumin, 2010, 31: 359–363 [钟泽, 孙利杰, 徐小秋, 等. 氮气氛中高温退火对ZnO薄膜发光性质的影响. 发光学报, 2010, 31: 359–363]. Google Scholar

[57] Ton-That C, Weston L, Phillips M R. Characteristics of point defects in the green luminescence from Zn- and O-rich ZnO. Phys Rev B, 2012, 86: 115205 CrossRef ADS Google Scholar

[58] Cui L, Zhang H Y, Wang G G, et al. Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron sputtering. Appl Surf Sci, 2012, 258: 2479-2485 CrossRef ADS Google Scholar

[59] Shabannia R, Abu-Hassan H. Vertically aligned ZnO nanorods synthesized using chemical bath deposition method on seed-layer ZnO/polyethylene naphthalate (PEN) substrates. Mater Lett, 2013, 90: 156-158 CrossRef Google Scholar

[60] Tian J L, Zhang H Y, Wang G G, et al. Influence of film thickness and annealing temperature on the structural and optical properties of ZnO thin films on Si (100) substrates grown by atomic layer deposition. Superlattices MicroStruct, 2015, 83: 719-729 CrossRef ADS Google Scholar

[61] Li S, Li J, Wang W, et al. Zinc vacancy-related complex and its abnormal photoluminescence in Zn+-implanted ZnO single crystals. Mater Lett, 2017, 192: 133-136 CrossRef Google Scholar

[62] Lany S, Zunger A. Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys Rev Lett, 2007, 98: 045501 CrossRef PubMed ADS Google Scholar

[63] Nguyen T, Tuan N T, Nguyen V D, et al. Near-infrared emission from ZnO nanorods grown by thermal evaporation. J Lumin, 2014, 156: 199-204 CrossRef ADS Google Scholar

[64] Kumar V, Swart H C, Ntwaeaborwa O M, et al. Origin of the red emission in zinc oxide nanophosphors. Mater Lett, 2013, 101: 57-60 CrossRef Google Scholar

[65] Alvi N H, Ul Hasan K, Nur O, et al. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res Lett, 2011, 6: 130 CrossRef PubMed ADS Google Scholar

[66] Wang Y G, Lau S P, Zhang X H, et al. Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films. J Cryst Growth, 2003, 252: 265-269 CrossRef ADS Google Scholar

[67] Bylander E G. Surface effects on the low-energy cathodoluminescence of zinc oxide. J Appl Phys, 1978, 49: 1188-1195 CrossRef ADS Google Scholar

[68] Wu X L, Siu G G, Fu C L, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl Phys Lett, 2001, 78: 2285-2287 CrossRef ADS Google Scholar

[69] Ahn C H, Kim Y Y, Kim D C, et al. Erratum: “A comparative analysis of deep level emission in ZnO layers deposited by various methods” [J. Appl. Phys. 105, 013502 (2009)]. J Appl Phys, 2009, 105: 089902 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Typical XRD pattern of ZnO:In and ZnO:(In, N) films.

  • Figure 2

    (Color online) XPS spectra of the ZnO films N1s core levels.

  • Figure 3

    (Color online) XPS spectra of the ZnO films O1s core levels (a) and the integrated peak area ratios (b).

  • Figure 4

    (Color online) Raman spectra of ZnO:In film and ZnO:(In, N) films annealed under various temperature (a), and normalized intensity of the P1(~274?cm?1) peak (b).

  • Figure 5

    (Color online) RT PL spectra normalized to the UV emission (a), and the intensity of the Gaussian-resolved into three emissions (b).

  • Table 1   Electrical properties of ZnO:In films and ZnO:(In, N) films under various annealing temperatures for 23?min

    样品

    退火温度(°C)

    载流子浓度

    (cm?3)

    迁移率

    (cm2?V?1?s?1)

    电阻率 (Ω?cm)

    导电

    类型

    S0

    --

    ?4.53×1019

    0.27

    0.52

    n

    S1

    --

    --

    --

    --

    Insulator

    S2

    550

    ?1.09×1015

    18.70

    307.70

    n

    S3

    578

    3.73×1016

    2.46

    68.06

    p (repeatable)

    S4

    600

    ?1.12×1018

    10.55

    0.52

    n

  • Table 2   The electrical properties of repeated p type ZnO:(In, N) films annealed at 578°C for 23?min

    载流子浓度

    (cm?3)

    迁移率

    (cm2?V?1?s?1)

    电阻率 (Ω?cm)

    导电

    类型

    S3

    3.73×1016

    2.46

    68.06

    p

    S5

    1.90×1016

    3.89

    80.43

    p

    S6

    1.08×1016

    5.48

    104.70

    p

    S7

    1.63×1016

    3.14

    122.40

    p

    S8

    5.80×1016

    1.74

    61.86

    p

    S9

    8.14×1015

    6.30

    121.60

    p

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1