Energy distribution and radiation of Q-bubble dark matter on the quantum space-time background

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 4: 049801(2018) https://doi.org/10.1360/SSPMA2017-00364

Energy distribution and radiation of Q-bubble dark matter on the quantum space-time background

More info
  • ReceivedDec 22, 2017
  • AcceptedJan 23, 2018
  • PublishedFeb 11, 2018
PACS numbers

Abstract

Energy distribution and radiation phenomena of Q-bubble dark matter on the quantum space-time background are studied in this paper. Under the quantum gravitational energy scale, the energy and energy level difference of Q-bubble are calculated respectively for energy and momentum correction dispersion relations. Moreover, the energy and energy level difference in the pertubation case are also calculated. We analysed radiation particles’ law of dark matter bubbles under the Lorentz symmetry breaking and the pertubation situation, and found that the radiated energy increases with quantum space-time effect increases, and it also increases with the bubble potential energy increases. These physical effects may be confirmed in the further dark matter observations and experiments.


Funded by

四川省教育厅自然科学基金(编号:)


References

[1] Kuzmin V, Rubakov V. Ultra-high energy cosmic rays: A window to post-inflationary reheating epoch of the universe? Phys Atomic Nucl, 1997, 61: 1028–1030. Google Scholar

[2] Berezinsky V, Vilenkin A. Cosmic necklaces and ultrahigh energy cosmic rays. Phys Rev Lett, 1997, 79: 5202-5205 CrossRef ADS Google Scholar

[3] Giudice G F, Riotto A, Tkachev I, et al. Production of massive fermions at preheating and leptogenesis. J High Energy Phys, 1999, 1999: 014 CrossRef ADS Google Scholar

[4] Dick R, Hopp K M, Wunderle K E. Superheavy dark matter and ultrahigh-energy cosmic rays. Can J Phys, 2005, 84: 537-543 CrossRef ADS Google Scholar

[5] Chung D J H, Kolb E W, Riotto A. Nonthermal supermassive dark matter. Phys Rev Lett, 1998, 81: 4048-4051 CrossRef ADS Google Scholar

[6] Chung D J H, Kolb E W, Riotto A. Production of massive particles during reheating. Phys Rev D, 1999, 60: 063504 CrossRef ADS Google Scholar

[7] Berezinsky V, Dokuchaev V, Eroshenko Y, et al. Superdense cosmological dark matter clumps. Phys Rev D, 2010, 81: 103529 CrossRef ADS arXiv Google Scholar

[8] Shaposhnikov M. Superheavy dark matter and supersymmetry. New Astron Rev, 2005, 49: 175-179 CrossRef ADS Google Scholar

[9] Coleman S. Q-balls. Nucl Phys B, 1985, 262: 263-283 CrossRef ADS Google Scholar

[10] Kusenko A, Kuzmin V, Shaposhnikov M, et al. Experimental signatures of supersymmetric dark-matter Q-balls. Phys Rev Lett, 1998, 80: 3185-3188 CrossRef ADS Google Scholar

[11] Kusenko A, Shaposhnikov M. Supersymmetric Q-balls as dark matter. Phys Lett B, 1998, 418: 46-54 CrossRef ADS Google Scholar

[12] Kasuya S, Kawasaki M. Baryogenesis from the gauge-mediation type Q-ball and the new type of Q-ball as the dark matter. Phys Rev D, 2014, 89: 103534 CrossRef ADS arXiv Google Scholar

[13] Verbin Y. Sigma model Q-balls and Q-stars. Phys Rev D, 2007, 76: 085018 CrossRef ADS arXiv Google Scholar

[14] Prikas A. Domain walls on the surface of Q-stars. J Math Phys, 2006, 47: 112503 CrossRef ADS Google Scholar

[15] Kusenko A, Mazumdar A, Multam?ki T. Gravitational waves from the fragmentation of a supersymmetric condensate. Phys Rev D, 2009, 79: 124034 CrossRef ADS arXiv Google Scholar

[16] Chiba T, Kamada K, Yamaguchi M. Gravitational waves from Q-ball formation. Phys Rev D, 2010, 81: 083503 CrossRef ADS arXiv Google Scholar

[17] Bakari D, Dekhissi H, Derkaoui J, et al. Energy losses of Q-balls. Astroparticle Phys, 2001, 15: 137-147 CrossRef ADS Google Scholar

[18] Clark S S. Particle creation from Q-balls. Nucl Phys B, 2006, 756: 38-70 CrossRef ADS Google Scholar

[19] Ouchrif M. Q-balls in underground experiments. Nucl Phys B-Proc Suppl, 2000, 85: 231-237 CrossRef ADS Google Scholar

[20] Coleman S, Glashow S L. High-energy tests of Lorentz invariance. Phys Rev D, 1999, 59: 116008 CrossRef ADS Google Scholar

[21] Amelino-Camelia G, Majid S. Waves on noncommutative space-time and gamma-ray bursts. Int J Mod Phys A, 2000, 15: 4301-4323 CrossRef ADS Google Scholar

[22] Kersting N, Yan J. Elimination of IR/UV via gravity in noncommutative field theory. Mod Phys Lett A, 2008, 23: 3341-3348 CrossRef ADS arXiv Google Scholar

[23] Rovelli C. Quantum Gravity. Cambridge: Cambridge University Press, 2004. 315–319. Google Scholar

[24] Blas D, Ivanov M M, Sibiryakov S. Testing Lorentz invariance of dark matter. J Cosmol Astropart Phys, 2012, 2012: 057 CrossRef ADS arXiv Google Scholar

[25] Berezhiani Z, Nesti F, Pilo L, et al. Gravity modification with Yukawa-type potential: Dark matter and mirror gravity. J High Energy Phys, 2009, 2009: 083 CrossRef ADS arXiv Google Scholar

[26] Berezhiani Z, Pilo L, Rossi N. Mirror matter, mirror gravity and galactic rotational curves. Eur Phys J C, 2010, 70: 305-316 CrossRef ADS arXiv Google Scholar

[27] Lunardini C, Razzaque S. High energy neutrinos from the Fermi bubbles. Phys Rev Lett, 2012, 108: 221102 CrossRef PubMed ADS arXiv Google Scholar

[28] Svidzinsky A A. Oscillating axion bubbles as an alternative to supermassive black holes at galactic centers. J Cosmol Astropart Phys, 2007, 2007: 018 CrossRef ADS Google Scholar

[29] Moore G D, Nelson A E. Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation. J High Energy Phys, 2001, 2001: 023 CrossRef ADS Google Scholar

[30] Ellis J, Mavromatos N E, Nanopoulos D V. Noncritical Liouville string escapes constraints on generic models of quantum gravity. Phys Rev D, 2002, 65: 064007 CrossRef ADS Google Scholar

[31] Ellis J, Mavromatos N E, Nanopoulos D V, et al. Quantum-gravity analysis of gamma-ray bursts using wavelets. Astron Astrophys, 2003, 402: 409-424 CrossRef ADS Google Scholar

[32] Amelino-Camelia G. Quantum-spacetime phenomenology. Living Rev Relativ, 2013, 16: 5 CrossRef PubMed ADS arXiv Google Scholar

[33] Cognola G, Elizalde E, Kirsten K. Casimir energies for spherically symmetric cavities. J Phys A-Math Gen, 2001, 34: 7311-7327 CrossRef ADS Google Scholar

[34] Setare M R, Mansouri R. Casimir effect for a spherical shell in de Sitter space. Class Quantum Grav, 2001, 18: 2331-2338 CrossRef ADS Google Scholar

[35] Yan J. Study of energy stability and perturbation in the Q-ball solutions of Klein-Gordon equation (in Chinese). Acta Phys Sin, 2013, 62: 230301 [颜骏. Klein-Gordon方程Q-球解中的能量稳定性与扰动研究. 物理学报, 2013, 62: 230301]. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1