References
[1]
Bondi
H,
van der Burg
M G J,
Metzner
A W K.
Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems.
Proc R Soc A-Math Phys Eng Sci,
1962, 269: 21-52
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems&author=Bondi H&author=van der Burg M G J&author=Metzner A W K&publication_year=1962&journal=Proc R Soc A-Math Phys Eng Sci&volume=269&pages=21-52
[2]
Weisberg
J M,
Nice
D J,
Taylor
J H.
Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16.
Astrophys J,
2010, 722: 1030-1034
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16&author=Weisberg J M&author=Nice D J&author=Taylor J H&publication_year=2010&journal=Astrophys J&volume=722&pages=1030-1034
[3]
Abbott
B P,
Abbott
R,
Abbott
T D.
Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys Rev Lett,
2016, 116: 061102
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observation of Gravitational Waves from a Binary Black Hole Merger&author=Abbott B P&author=Abbott R&author=Abbott T D&publication_year=2016&journal=Phys Rev Lett&volume=116&pages=061102
[4]
Abbott
B P,
Abbott
R,
Abbott
T D.
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.
Phys Rev Lett,
2017, 119: 161101
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral&author=Abbott B P&author=Abbott R&author=Abbott T D&publication_year=2017&journal=Phys Rev Lett&volume=119&pages=161101
[5]
Schutz
B F.
Determining the Hubble constant from gravitational wave observations.
Nature,
1986, 323: 310-311
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Determining the Hubble constant from gravitational wave observations&author=Schutz B F&publication_year=1986&journal=Nature&volume=323&pages=310-311
[6]
Abbott
B P,
Abbott
R,
Abbott
T D.
A gravitational-wave standard siren measurement of the Hubble constant.
Nature,
2017, : 85-88
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=A gravitational-wave standard siren measurement of the Hubble constant&author=Abbott B P&author=Abbott R&author=Abbott T D&publication_year=2017&journal=Nature&pages=85-88
[7]
Zhao W, Zhang X, Liu X J, et al. Gravitational wave and gravitational-wave sources (in Chinese). Prog Astron, 2017, 35: 316--344.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao W, Zhang X, Liu X J, et al. Gravitational wave and gravitational-wave sources (in Chinese). Prog Astron, 2017, 35: 316--344&
[8]
Blair
D,
Ju
L,
Zhao
C N.
Gravitational wave astronomy: the current status.
Sci China-Phys Mech Astron,
2015, 58: 120402
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gravitational wave astronomy: the current status&author=Blair D&author=Ju L&author=Zhao C N&publication_year=2015&journal=Sci China-Phys Mech Astron&volume=58&pages=120402
[9]
Punturo
M,
Abernathy
M,
Acernese
F.
The Einstein Telescope: a third-generation gravitational wave observatory.
Class Quantum Grav,
2010, 27: 194002
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=The Einstein Telescope: a third-generation gravitational wave observatory&author=Punturo M&author=Abernathy M&author=Acernese F&publication_year=2010&journal=Class Quantum Grav&volume=27&pages=194002
[10]
Abbott
B P,
Abbott
R,
Abbott
T D.
Exploring the sensitivity of next generation gravitational wave detectors.
Class Quantum Grav,
2017, 34: 044001
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Exploring the sensitivity of next generation gravitational wave detectors&author=Abbott B P&author=Abbott R&author=Abbott T D&publication_year=2017&journal=Class Quantum Grav&volume=34&pages=044001
[11]
Klein
A,
Barausse
E,
Sesana
A.
Science with the space-based interferometer eLISA: Supermassive black hole binaries.
Phys Rev D,
2016, 93: 024003
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Science with the space-based interferometer eLISA: Supermassive black hole binaries&author=Klein A&author=Barausse E&author=Sesana A&publication_year=2016&journal=Phys Rev D&volume=93&pages=024003
[12]
Abbott
B P,
Abbott
R,
Abbott
T D.
GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.
Phys Rev Lett,
2017, 118: 221101
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2&author=Abbott B P&author=Abbott R&author=Abbott T D&publication_year=2017&journal=Phys Rev Lett&volume=118&pages=221101
[13]
Zhao
W,
Wen
L.
Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology.
Phys Rev D,
2018, 97: 064031
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology&author=Zhao W&author=Wen L&publication_year=2018&journal=Phys Rev D&volume=97&pages=064031
[14]
Zhao
W,
Van Den Broeck
C,
Baskaran
D.
Determination of dark energy by the Einstein Telescope: Comparing with CMB, BAO, and SNIa observations.
Phys Rev D,
2011, 83: 023005
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Determination of dark energy by the Einstein Telescope: Comparing with CMB, BAO, and SNIa observations&author=Zhao W&author=Van Den Broeck C&author=Baskaran D&publication_year=2011&journal=Phys Rev D&volume=83&pages=023005
[15]
Fan
X L,
Messenger
C,
Heng
I S.
A Bayesian Approach to Multi-messenger Astronomy: Identification of Gravitational-wave Host Galaxies.
Astrophys J,
2014, 795: 43
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Bayesian Approach to Multi-messenger Astronomy: Identification of Gravitational-wave Host Galaxies&author=Fan X L&author=Messenger C&author=Heng I S&publication_year=2014&journal=Astrophys J&volume=795&pages=43
[16]
Fan
X,
Messenger
C,
Heng
I S.
Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.
Phys Rev Lett,
2017, 119: 181102
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves&author=Fan X&author=Messenger C&author=Heng I S&publication_year=2017&journal=Phys Rev Lett&volume=119&pages=181102
[17]
Liao
K,
Fan
X L,
Ding
X.
Precision cosmology from future lensed gravitational wave and electromagnetic signals..
Nat Commun,
2017, 8: 1148
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Precision cosmology from future lensed gravitational wave and electromagnetic signals.&author=Liao K&author=Fan X L&author=Ding X&publication_year=2017&journal=Nat Commun&volume=8&pages=1148
[18]
Nakar
E.
Short-hard gamma-ray bursts.
Phys Rep,
2007, 442: 166-236
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Short-hard gamma-ray bursts&author=Nakar E&publication_year=2007&journal=Phys Rep&volume=442&pages=166-236
[19]
Abbott
B P,
Abbott
R,
Abbott
T D.
Multi-messenger Observations of a Binary Neutron Star Merger.
Astrophys J,
2017, 848: L12
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-messenger Observations of a Binary Neutron Star Merger&author=Abbott B P&author=Abbott R&author=Abbott T D&publication_year=2017&journal=Astrophys J&volume=848&pages=L12
[20]
Cutler
C,
Holz
D E.
Ultrahigh precision cosmology from gravitational waves.
Phys Rev D,
2009, 80: 104009
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrahigh precision cosmology from gravitational waves&author=Cutler C&author=Holz D E&publication_year=2009&journal=Phys Rev D&volume=80&pages=104009
[21]
Tamanini
N,
Caprini
C,
Barausse
E.
Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens.
J Cosmol Astropart Phys,
2016, 2016: 002-002
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens&author=Tamanini N&author=Caprini C&author=Barausse E&publication_year=2016&journal=J Cosmol Astropart Phys&volume=2016&pages=002-002
[22]
MacLeod
C L,
Hogan
C J.
Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information.
Phys Rev D,
2008, 77: 043512
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information&author=MacLeod C L&author=Hogan C J&publication_year=2008&journal=Phys Rev D&volume=77&pages=043512
[23]
Petiteau
A,
Babak
S,
Sesana
A.
Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries.
Astrophys J,
2011, 732: 82
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries&author=Petiteau A&author=Babak S&author=Sesana A&publication_year=2011&journal=Astrophys J&volume=732&pages=82
[24]
Del Pozzo
W.
Measuring the Hubble constant using gravitational waves.
J Phys-Conf Ser,
2014, 484: 012030
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Measuring the Hubble constant using gravitational waves&author=Del Pozzo W&publication_year=2014&journal=J Phys-Conf Ser&volume=484&pages=012030
[25]
Ding X H, Biesiada M, Zheng X G, et al. Cosmological inference from standard sirens without redshift measurements,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ding X H, Biesiada M, Zheng X G, et al. Cosmological inference from standard sirens without redshift measurements,&
[26]
Hinderer
T,
Lackey
B D,
Lang
R N.
Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral.
Phys Rev D,
2010, 81: 123016
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral&author=Hinderer T&author=Lackey B D&author=Lang R N&publication_year=2010&journal=Phys Rev D&volume=81&pages=123016
[27]
Messenger
C,
Read
J.
Measuring a Cosmological Distance-Redshift Relationship Using Only Gravitational Wave Observations of Binary Neutron Star Coalescences.
Phys Rev Lett,
2012, 108: 091101
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Measuring a Cosmological Distance-Redshift Relationship Using Only Gravitational Wave Observations of Binary Neutron Star Coalescences&author=Messenger C&author=Read J&publication_year=2012&journal=Phys Rev Lett&volume=108&pages=091101
[28]
Del Pozzo
W,
Li
T G F,
Messenger
C.
Cosmological inference using only gravitational wave observations of binary neutron stars.
Phys Rev D,
2017, 95: 043502
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cosmological inference using only gravitational wave observations of binary neutron stars&author=Del Pozzo W&author=Li T G F&author=Messenger C&publication_year=2017&journal=Phys Rev D&volume=95&pages=043502
[29]
Messenger
C,
Takami
K,
Gossan
S.
Source Redshifts from Gravitational-Wave Observations of Binary Neutron Star Mergers.
Phys Rev X,
2014, 4: 041004
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Source Redshifts from Gravitational-Wave Observations of Binary Neutron Star Mergers&author=Messenger C&author=Takami K&author=Gossan S&publication_year=2014&journal=Phys Rev X&volume=4&pages=041004
[30]
Kiziltan B, Kottas A, Thorsett S E. The neutron star mass distribution,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kiziltan B, Kottas A, Thorsett S E. The neutron star mass distribution,&
[31]
Taylor
S R,
Gair
J R,
Mandel
I.
Cosmology using advanced gravitational-wave detectors alone.
Phys Rev D,
2012, 85: 023535
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cosmology using advanced gravitational-wave detectors alone&author=Taylor S R&author=Gair J R&author=Mandel I&publication_year=2012&journal=Phys Rev D&volume=85&pages=023535
[32]
Taylor
S R,
Gair
J R.
Cosmology with the lights off: Standard sirens in the Einstein Telescope era.
Phys Rev D,
2012, 86: 023502
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cosmology with the lights off: Standard sirens in the Einstein Telescope era&author=Taylor S R&author=Gair J R&publication_year=2012&journal=Phys Rev D&volume=86&pages=023502
[33]
Seto
N,
Kawamura
S,
Nakamura
T.
Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space.
Phys Rev Lett,
2001, 87: 221103
CrossRef
PubMed
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space&author=Seto N&author=Kawamura S&author=Nakamura T&publication_year=2001&journal=Phys Rev Lett&volume=87&pages=221103
[34]
Nishizawa
A,
Yagi
K,
Taruya
A.
Cosmology with space-based gravitational-wave detectors: Dark energy and primordial gravitational waves.
Phys Rev D,
2012, 85: 044047
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cosmology with space-based gravitational-wave detectors: Dark energy and primordial gravitational waves&author=Nishizawa A&author=Yagi K&author=Taruya A&publication_year=2012&journal=Phys Rev D&volume=85&pages=044047
[35]
Chen Y H, Fishbach M, Holz D E. Precision standard siren cosmology,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Y H, Fishbach M, Holz D E. Precision standard siren cosmology,&
[36]
Sathyaprakash
B S,
Schutz
B F,
Van Den Broeck
C.
Cosmography with the Einstein Telescope.
Class Quantum Grav,
2010, 27: 215006
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cosmography with the Einstein Telescope&author=Sathyaprakash B S&author=Schutz B F&author=Van Den Broeck C&publication_year=2010&journal=Class Quantum Grav&volume=27&pages=215006
[37]
Cai
R G,
Yang
T.
Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope.
Phys Rev D,
2017, 95: 044024
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope&author=Cai R G&author=Yang T&publication_year=2017&journal=Phys Rev D&volume=95&pages=044024
[38]
Arun
K G,
Iyer
B R,
Sathyaprakash
B S.
Higher signal harmonics, LISA's angular resolution, and dark energy.
Phys Rev D,
2007, 76: 104016
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Higher signal harmonics, LISA's angular resolution, and dark energy&author=Arun K G&author=Iyer B R&author=Sathyaprakash B S&publication_year=2007&journal=Phys Rev D&volume=76&pages=104016
[39]
Van Den Broeck
C,
Trias
M,
Sathyaprakash
B S.
Weak lensing effects in the measurement of the dark energy equation of state with LISA.
Phys Rev D,
2010, 81: 124031
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Weak lensing effects in the measurement of the dark energy equation of state with LISA&author=Van Den Broeck C&author=Trias M&author=Sathyaprakash B S&publication_year=2010&journal=Phys Rev D&volume=81&pages=124031
[40]
Amaro-Seoane P, Audley H, Babak S, et al. Laser interferometer space antenna,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amaro-Seoane P, Audley H, Babak S, et al. Laser interferometer space antenna,&
[41]
Cornish N, Robson T. The construction and use of LISA sensitivity curves,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cornish N, Robson T. The construction and use of LISA sensitivity curves,&
[42]
Cai
R G,
Tamanini
N,
Yang
T.
Reconstructing the dark sector interaction with LISA.
J Cosmol Astropart Phys,
2017, 2017: 031-031
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reconstructing the dark sector interaction with LISA&author=Cai R G&author=Tamanini N&author=Yang T&publication_year=2017&journal=J Cosmol Astropart Phys&volume=2017&pages=031-031
[43]
Camera
S,
Nishizawa
A.
Beyond Concordance Cosmology with Magnification of Gravitational-Wave Standard Sirens.
Phys Rev Lett,
2013, 110: 151103
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Beyond Concordance Cosmology with Magnification of Gravitational-Wave Standard Sirens&author=Camera S&author=Nishizawa A&publication_year=2013&journal=Phys Rev Lett&volume=110&pages=151103
[44]
Cai R G, Liu T B, Liu X W, et al. Probing cosmic anisotropy with gravitational waves as standard sirens,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cai R G, Liu T B, Liu X W, et al. Probing cosmic anisotropy with gravitational waves as standard sirens,&
[45]
Lin H N, Li J, Li X. Testing the anisotropy of the universe using the simulated gravitational wave events from advanced LIGO and Virgo,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lin H N, Li J, Li X. Testing the anisotropy of the universe using the simulated gravitational wave events from advanced LIGO and Virgo,&
[46]
Wang L F, Zhang X N, Zhang J F, et al. Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang L F, Zhang X N, Zhang J F, et al. Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology,&
[47]
Yang T, Holanda R F L, Hu B. Constraints on the cosmic distance duality relation with simulated data of gravitational waves from the Einstein Telescope,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang T, Holanda R F L, Hu B. Constraints on the cosmic distance duality relation with simulated data of gravitational waves from the Einstein Telescope,&
[48]
Liu
X J,
Zhao
W,
Zhang
Y.
Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases.
Phys Rev D,
2016, 93: 024031
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases&author=Liu X J&author=Zhao W&author=Zhang Y&publication_year=2016&journal=Phys Rev D&volume=93&pages=024031
[49]
Cai
R G,
Cao
Z,
Guo
Z K.
The gravitational-wave physics.
Natl Sci Rev,
2017, 4: 687-706
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The gravitational-wave physics&author=Cai R G&author=Cao Z&author=Guo Z K&publication_year=2017&journal=Natl Sci Rev&volume=4&pages=687-706