Gravitational-wave standard siren and cosmology

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 7: 079805(2018) https://doi.org/10.1360/SSPMA2018-00098

Gravitational-wave standard siren and cosmology

ZHAO Wen1,2,*,*
More info
  • ReceivedApr 2, 2018
  • AcceptedApr 11, 2018
  • PublishedJun 5, 2018
PACS numbers

Abstract

The discoveries of gravitational-wave (GW) event GW170817, caused by the coalescence of binary neutron-star, as well as the electromagnetic counterparts in multi-frequency bands, mark the coming of multimessenger GW astronomy. By observing the GW waveform of compact binary coalescence, one can independently determine its luminosity distance, which indicates that this kind of GW sources can be treated as “standard sirens" to study the expansion history of the Universe. This provides a novel method for the research of cosmology. In this article, we introduce the basic principle of GW sources as “standard sirens", and focus on various methods to determine the distance and redshift of GW events. We also discuss the detection capabilities of constraining cosmological parameters for (second-generation and third-generation) ground-based GW detectors and space-based GW detectors. In particular, we investigate the potential constraints on the Hubble constant and equation-of-state of dark energy.


Funded by

中央高校基础研究基金和中国科学院战略先导(XDB23010200)

国家自然科学基金(11773028)


Acknowledgment

感谢西澳大利亚大学温琳清, 中国科学技术大学孔旭和王挺贵, 湖北第二师范学院范锡龙的有益讨论.


References

[1] Bondi H, van der Burg M G J, Metzner A W K. Gravitational Waves in General Relativity. VII. Waves from Axi-Symmetric Isolated Systems. Proc R Soc A-Math Phys Eng Sci, 1962, 269: 21-52 CrossRef ADS Google Scholar

[2] Weisberg J M, Nice D J, Taylor J H. Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16. Astrophys J, 2010, 722: 1030-1034 CrossRef ADS arXiv Google Scholar

[3] Abbott B P, Abbott R, Abbott T D. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys Rev Lett, 2016, 116: 061102 CrossRef PubMed ADS arXiv Google Scholar

[4] Abbott B P, Abbott R, Abbott T D. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys Rev Lett, 2017, 119: 161101 CrossRef PubMed ADS arXiv Google Scholar

[5] Schutz B F. Determining the Hubble constant from gravitational wave observations. Nature, 1986, 323: 310-311 CrossRef ADS Google Scholar

[6] Abbott B P, Abbott R, Abbott T D. A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, : 85-88 CrossRef PubMed ADS arXiv Google Scholar

[7] Zhao W, Zhang X, Liu X J, et al. Gravitational wave and gravitational-wave sources (in Chinese). Prog Astron, 2017, 35: 316--344. Google Scholar

[8] Blair D, Ju L, Zhao C N. Gravitational wave astronomy: the current status. Sci China-Phys Mech Astron, 2015, 58: 120402 CrossRef ADS arXiv Google Scholar

[9] Punturo M, Abernathy M, Acernese F. The Einstein Telescope: a third-generation gravitational wave observatory. Class Quantum Grav, 2010, 27: 194002 CrossRef ADS Google Scholar

[10] Abbott B P, Abbott R, Abbott T D. Exploring the sensitivity of next generation gravitational wave detectors. Class Quantum Grav, 2017, 34: 044001 CrossRef ADS arXiv Google Scholar

[11] Klein A, Barausse E, Sesana A. Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys Rev D, 2016, 93: 024003 CrossRef ADS arXiv Google Scholar

[12] Abbott B P, Abbott R, Abbott T D. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys Rev Lett, 2017, 118: 221101 CrossRef PubMed ADS arXiv Google Scholar

[13] Zhao W, Wen L. Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology. Phys Rev D, 2018, 97: 064031 CrossRef ADS arXiv Google Scholar

[14] Zhao W, Van Den Broeck C, Baskaran D. Determination of dark energy by the Einstein Telescope: Comparing with CMB, BAO, and SNIa observations. Phys Rev D, 2011, 83: 023005 CrossRef ADS arXiv Google Scholar

[15] Fan X L, Messenger C, Heng I S. A Bayesian Approach to Multi-messenger Astronomy: Identification of Gravitational-wave Host Galaxies. Astrophys J, 2014, 795: 43 CrossRef ADS arXiv Google Scholar

[16] Fan X, Messenger C, Heng I S. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves. Phys Rev Lett, 2017, 119: 181102 CrossRef PubMed ADS arXiv Google Scholar

[17] Liao K, Fan X L, Ding X. Precision cosmology from future lensed gravitational wave and electromagnetic signals.. Nat Commun, 2017, 8: 1148 CrossRef PubMed Google Scholar

[18] Nakar E. Short-hard gamma-ray bursts. Phys Rep, 2007, 442: 166-236 CrossRef ADS Google Scholar

[19] Abbott B P, Abbott R, Abbott T D. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys J, 2017, 848: L12 CrossRef ADS arXiv Google Scholar

[20] Cutler C, Holz D E. Ultrahigh precision cosmology from gravitational waves. Phys Rev D, 2009, 80: 104009 CrossRef ADS arXiv Google Scholar

[21] Tamanini N, Caprini C, Barausse E. Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens. J Cosmol Astropart Phys, 2016, 2016: 002-002 CrossRef ADS arXiv Google Scholar

[22] MacLeod C L, Hogan C J. Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information. Phys Rev D, 2008, 77: 043512 CrossRef ADS arXiv Google Scholar

[23] Petiteau A, Babak S, Sesana A. Constraining the Dark Energy Equation of State Using LISA Observations of Spinning Massive Black Hole Binaries. Astrophys J, 2011, 732: 82 CrossRef ADS arXiv Google Scholar

[24] Del Pozzo W. Measuring the Hubble constant using gravitational waves. J Phys-Conf Ser, 2014, 484: 012030 CrossRef ADS Google Scholar

[25] Ding X H, Biesiada M, Zheng X G, et al. Cosmological inference from standard sirens without redshift measurements,. arXiv Google Scholar

[26] Hinderer T, Lackey B D, Lang R N. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys Rev D, 2010, 81: 123016 CrossRef ADS arXiv Google Scholar

[27] Messenger C, Read J. Measuring a Cosmological Distance-Redshift Relationship Using Only Gravitational Wave Observations of Binary Neutron Star Coalescences. Phys Rev Lett, 2012, 108: 091101 CrossRef PubMed ADS arXiv Google Scholar

[28] Del Pozzo W, Li T G F, Messenger C. Cosmological inference using only gravitational wave observations of binary neutron stars. Phys Rev D, 2017, 95: 043502 CrossRef ADS arXiv Google Scholar

[29] Messenger C, Takami K, Gossan S. Source Redshifts from Gravitational-Wave Observations of Binary Neutron Star Mergers. Phys Rev X, 2014, 4: 041004 CrossRef ADS arXiv Google Scholar

[30] Kiziltan B, Kottas A, Thorsett S E. The neutron star mass distribution,. arXiv Google Scholar

[31] Taylor S R, Gair J R, Mandel I. Cosmology using advanced gravitational-wave detectors alone. Phys Rev D, 2012, 85: 023535 CrossRef ADS arXiv Google Scholar

[32] Taylor S R, Gair J R. Cosmology with the lights off: Standard sirens in the Einstein Telescope era. Phys Rev D, 2012, 86: 023502 CrossRef ADS arXiv Google Scholar

[33] Seto N, Kawamura S, Nakamura T. Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space. Phys Rev Lett, 2001, 87: 221103 CrossRef PubMed ADS Google Scholar

[34] Nishizawa A, Yagi K, Taruya A. Cosmology with space-based gravitational-wave detectors: Dark energy and primordial gravitational waves. Phys Rev D, 2012, 85: 044047 CrossRef ADS arXiv Google Scholar

[35] Chen Y H, Fishbach M, Holz D E. Precision standard siren cosmology,. arXiv Google Scholar

[36] Sathyaprakash B S, Schutz B F, Van Den Broeck C. Cosmography with the Einstein Telescope. Class Quantum Grav, 2010, 27: 215006 CrossRef ADS arXiv Google Scholar

[37] Cai R G, Yang T. Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope. Phys Rev D, 2017, 95: 044024 CrossRef ADS arXiv Google Scholar

[38] Arun K G, Iyer B R, Sathyaprakash B S. Higher signal harmonics, LISA's angular resolution, and dark energy. Phys Rev D, 2007, 76: 104016 CrossRef ADS arXiv Google Scholar

[39] Van Den Broeck C, Trias M, Sathyaprakash B S. Weak lensing effects in the measurement of the dark energy equation of state with LISA. Phys Rev D, 2010, 81: 124031 CrossRef ADS arXiv Google Scholar

[40] Amaro-Seoane P, Audley H, Babak S, et al. Laser interferometer space antenna,. arXiv Google Scholar

[41] Cornish N, Robson T. The construction and use of LISA sensitivity curves,. arXiv Google Scholar

[42] Cai R G, Tamanini N, Yang T. Reconstructing the dark sector interaction with LISA. J Cosmol Astropart Phys, 2017, 2017: 031-031 CrossRef ADS arXiv Google Scholar

[43] Camera S, Nishizawa A. Beyond Concordance Cosmology with Magnification of Gravitational-Wave Standard Sirens. Phys Rev Lett, 2013, 110: 151103 CrossRef PubMed ADS arXiv Google Scholar

[44] Cai R G, Liu T B, Liu X W, et al. Probing cosmic anisotropy with gravitational waves as standard sirens,. arXiv Google Scholar

[45] Lin H N, Li J, Li X. Testing the anisotropy of the universe using the simulated gravitational wave events from advanced LIGO and Virgo,. arXiv Google Scholar

[46] Wang L F, Zhang X N, Zhang J F, et al. Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology,. arXiv Google Scholar

[47] Yang T, Holanda R F L, Hu B. Constraints on the cosmic distance duality relation with simulated data of gravitational waves from the Einstein Telescope,. arXiv Google Scholar

[48] Liu X J, Zhao W, Zhang Y. Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases. Phys Rev D, 2016, 93: 024031 CrossRef ADS arXiv Google Scholar

[49] Cai R G, Cao Z, Guo Z K. The gravitational-wave physics. Natl Sci Rev, 2017, 4: 687-706 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1