Using gravitational wave to test general relativity

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 7: 079806(2018) https://doi.org/10.1360/SSPMA2018-00099

Using gravitational wave to test general relativity

More info
  • ReceivedApr 2, 2018
  • AcceptedApr 25, 2018
  • PublishedAug 7, 2018
PACS numbers

Abstract

The first direct detection of gravitational wave was realized by LIGO on September 14, 2015. Since then gravitational wave detection progresses very rapidly. So far, LIGO has confirmed 5 gravitational wave events of binary black hole merger, including GW150914, GW151226, GW170608, GW170104 and GW170814. And one gravitational wave event of binary neutron star merger has also been detected very recently, GW170817. Besides these 6 gravitational events LIGO has one more suspected gravitational wave event of binary black hole merger LVT151012. Inspired by the gravitational wave detection, gravitational wave physics and gravitational wave astronomy develop also very rapidly since 2016. The direct detection of gravitational wave qualitatively supports the general theory of relativity. But gravitational wave detection, as experiments involving strong gravitational field and strongly dynamical space-time region, can also quantitatively tests general relativity, and even find the applicable scope of general relativity, and point out the development of gravity theory beyond general relativity. In this paper, we will introduce how to use gravitational wave to test general relativity. We will try to give a comprehensive introduction to the possible ways applying gravitational wave detection to test general relativity, including the qualitative properties of gravitational waves, the degree of freedom of gravitational waves, the speed of gravitational wave propagation and the waveform characteristics of gravitational waves.


Funded by

中央高校基本科研业务费专项资金

湖南省自然科学基金(2018JJ2073)

国家自然科学基金(11690023)


Acknowledgment

感谢中国科学院理论物理研究所的蔡荣根院士、中国科学院高能物理研究所的黄超光研究员、中国科学院上海天文台的韩文标研究员、北京师范大学的朱宗宏教授和高鹤教授、中山大学的胡一鸣教授、重庆大学的李瑾教授以及湖北第二师范学院的范锡龙教授在相关问题上的有益讨论.


References

[1] Senovilla J M M, Garfinkle D. The 1965 penrose singularity theorem. Class Quantum Grav, 2015, 32: 124008 CrossRef ADS arXiv Google Scholar

[2] Mashhoon B. Gravitoelectromagnetism: A brief review. ArXiv: gr-qc/0311030v2. Google Scholar

[3] Maartens R, Bassett B A. Gravito-electromagnetism. Class Quantum Grav, 1998, 15: 705-717 CrossRef ADS Google Scholar

[4] Liu X. The Study of Electromagnetic Theory of Gravity with High Derivatives (in Chinese). Dissertation for Master Degree. Wuhan: Hubei University, 2004 [刘鑫. 电磁型高导数引力理论及引力超导研究. 硕士学位论文. 武汉: 湖北大学, 2004]. Google Scholar

[5] Liang C B. The Introduction to Differential Geometry and the General Relativity (in Chinese). Beijing: Beijing Normal University Press, 2000 [梁灿彬. 微分几何入门与广义相对论. 北京: 北京师范大学出版社, 2000]. Google Scholar

[6] Liang C B, Cao Z J. Relativity From Scratch (in Chinese). Beijing: High Education Press, 2013 [梁灿彬, 曹周键. 从零学相对论. 北京: 高等教育出版社, 2013]. Google Scholar

[7] Weinberg S. The Quantum Theory of Fields. Cambridge: Cambridge University Press, 2010. Google Scholar

[8] Wu Y L. Quantum field theory of gravity with spin and scaling gauge invariance and spacetime dynamics with quantum inflation. Phys Rev D, 2016, 93: 024012 CrossRef ADS arXiv Google Scholar

[9] Wu Y L. Hyperunified field theory and gravitational gauge-geometry duality. Eur Phys J C, 2018, 78: 28 CrossRef ADS arXiv Google Scholar

[10] Yang J S, Ma Y G. Quantum dynamics in loop quantum gravity (in Chinese). Chin Sci Bull, 2015, 60: 3287-3293 CrossRef Google Scholar

[11] Thorne K. The Science of Interstellar. New York, London: W W Norton & Company, 2014 [Thorne K. 星际穿越. 苟利军, 王岚, 李然, 等, 译. 杭州: 浙江人民出版社, 2015. 247–251]. Google Scholar

[12] Chang J. Heart beats from the dark side. Nat Astron, 2018, 2: 99 CrossRef ADS Google Scholar

[13] Ambrosi G, An Q, Asfandiyarov R, et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature, 2017, 552: 63-66 CrossRef PubMed ADS arXiv Google Scholar

[14] Bowman J D, Rogers A E E, Monsalve R A, et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature, 2018, 555: 67-70 CrossRef PubMed ADS Google Scholar

[15] Barkana R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature, 2018, 555: 71-74 CrossRef PubMed ADS arXiv Google Scholar

[16] Genzel R, Schreiber N M F, übler H, et al. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago. Nature, 2018, 543: 397-401 CrossRef PubMed ADS arXiv Google Scholar

[17] Carroll S M. The cosmological constant. Living Rev Relativ, 2001, 4: 1 CrossRef PubMed ADS Google Scholar

[18] Padmanabhan T. Cosmological constant—the weight of the vacuum. Phys Rept, 2003, 380: 235–320. Google Scholar

[19] Peebles P J E, Ratra B. The cosmological constant and dark energy. Rev Mod Phys, 2003, 75: 559-606 CrossRef ADS Google Scholar

[20] Kennefick D. Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves. Princeton: Princeton University Press, 2007. Google Scholar

[21] Cai R G, Cao Z, Guo Z K, et al. The gravitational-wave physics. Natl Sci Rev, 2017, 4: 687-706 CrossRef Google Scholar

[22] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett, 2016, 116: 061102 CrossRef PubMed ADS arXiv Google Scholar

[23] Abbott B P, Abbott R, Abbott T D, et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett, 2016, 116: 241103 CrossRef PubMed ADS arXiv Google Scholar

[24] Abbott B P, Abbott R, Abbott T D, et al. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys Rev Lett, 2017, 118: 221101 CrossRef PubMed ADS arXiv Google Scholar

[25] Abbott B P, Abbott R, Abbott T D, et al. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett, 2017, 119: 141101 CrossRef PubMed ADS arXiv Google Scholar

[26] Abbott B P, Abbott R, Abbott T D, et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett, 2017, 119: 161101 CrossRef PubMed ADS arXiv Google Scholar

[27] Abbott B P, Abbott R, Abbott T D, et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D, 2016, 93: 122003 CrossRef ADS arXiv Google Scholar

[28] Abbott B P, Abbott R, Abbott T D, et al. GW170608: Observation of a 19 solar-mass binary black hole coalescence. Astrophys J, 2017, 851: L35 CrossRef ADS arXiv Google Scholar

[29] Cao Z J. Gravitational wave astronomy: Chance and challenge to fundamental physics and astrophysics. Sci China-Phys Mech Astron, 2016, 59: 110431 CrossRef ADS Google Scholar

[30] Cao Z J, Du Z H. Numerical relativity and gravitational wave astronomy (in Chinese). Sci Sin-Phys Mach Astron, 2017, 47: 010405 CrossRef ADS Google Scholar

[31] Cao Z J, Wang H, Zhu J Y. Initial study on the application of deep learning to the gravitational wave data analysis (in Chinese). J Henan Normal Univ (Nat Sci), 2018, doi: 10.16366/j.cnki.1000-2367.2018.02.005 [曹周键, 王赫, 朱建阳. 深度学习在引力波数据处理中的应用初探. 河南师范大学学报(自然科学版), 2018, doi: 10.16366/j.cnki.1000-2367.2018.02.005]. Google Scholar

[32] Cao Z J. Gravitational wave detection and gravitational wave astronomy (in Chinese). Modern Phys, 2015, 27: 40–44 [曹周键. 引力波探测和引力波天文学. 现代物理知识, 2015, 27: 40–44]. Google Scholar

[33] Bondi H, van der Burg M G J, Metzner A W K. Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems. Proc R Soc A-Math Phys Eng Sci, 1962, 269: 21-52 CrossRef ADS Google Scholar

[34] He X, Cao Z, Jing J. Note on the gravitational and electromagnetic radiation for the Einstein-Maxwell equations with cosmological constant. ArXiv: 1710.05475. Google Scholar

[35] de Bernardis P, Ade P A R, Bock J J, et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature, 2000, 404: 955-959 CrossRef PubMed Google Scholar

[36] Komatsu E, Smith K M, Dunkley J, et al. Seven-year wilkinson microwave anisotropy probe (wmap ) observations: Cosmological interpretation. Astrophys J Suppl Ser, 2011, 192: 18 CrossRef ADS arXiv Google Scholar

[37] Perlmutter S, Aldering G, della Valle M, et al. Discovery of a supernova explosion at half the age of the universe. Nature, 1998, 391: 51-54 CrossRef ADS Google Scholar

[38] Riess A G, Filippenko A V, Challis P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J, 1998, 116: 1009-1038 CrossRef ADS Google Scholar

[39] Allen S W, Rapetti D A, Schmidt R W, et al. Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters. Mon Not R Astron Soc, 2008, 383: 879-896 CrossRef ADS arXiv Google Scholar

[40] Eisenstein D J, Zehavi I, Hogg D W, et al. Detection of the baryon acoustic peak in the large‐scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560-574 CrossRef ADS Google Scholar

[41] Giannantonio T, Scranton R, Crittenden R G, et al. Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications. Phys Rev D, 2008, 77: 123520 CrossRef ADS arXiv Google Scholar

[42] Suyu S H, Marshall P J, Auger M W, et al. Dissecting the gravitational lens B1608+656. II. Precision measurements of the hubble constant, spatial curvature, and the dark energy equation of state. Astrophys J, 2010, 711: 201-221 CrossRef ADS arXiv Google Scholar

[43] Saw V L. Asymptotically simple spacetimes and mass loss due to gravitational waves. Int J Mod Phys D, 2018, 27: 1730027 CrossRef ADS arXiv Google Scholar

[44] Ashtekar A, Bonga B, Kesavan A. Asymptotics with a positive cosmological constant. I. Basic framework. Class Quantum Grav, 2015, 32: 025004 CrossRef ADS arXiv Google Scholar

[45] Ashtekar A, Bonga B, Kesavan A. Asymptotics with a positive cosmological constant. III. The quadrupole formula. Phys Rev D, 2015, 92: 104032 CrossRef ADS arXiv Google Scholar

[46] Ashtekar A, Bonga B, Kesavan A. Gravitational waves from isolated systems: Surprising consequences of a positive cosmological constant. Phys Rev Lett, 2016, 116: 051101 CrossRef PubMed ADS arXiv Google Scholar

[47] Ge H, Luo M, Su Q, et al. Bondi-Sachs metrics and photon rockets. Gen Relativ Gravit, 2011, 43: 2729-2742 CrossRef ADS arXiv Google Scholar

[48] He X, Cao Z. New Bondi-type outgoing boundary condition for the Einstein equations with cosmological constant. Int J Mod Phys D, 2015, 24: 1550081 CrossRef ADS Google Scholar

[49] He X, Cao Z, Jing J. Asymptotical null structure of an electro-vacuum spacetime with a cosmological constant. Int J Mod Phys D, 2016, 25: 1650086 CrossRef ADS Google Scholar

[50] Amaro-Seoane P, Audley H, Babak S, et al. Laser interferometer space antenna. ArXiv: 1702.00786. Google Scholar

[51] He X, Jing J, Cao Z. Relationship between Bondi-Sachs quantities and source of gravitational radiation in asymptotically de Sitter spacetime. Int J Mod Phys D, 2018, 27: 1850046 CrossRef ADS arXiv Google Scholar

[52] Cai R G, Cao Z J, Han W B, et al. The gravitational wave models for binary compact objects (in Chinese). Sci Bull, 2016, 61: 1525-1535 CrossRef Google Scholar

[53] Almheiri A, Marolf D, Polchinski J, et al. Black holes: complementarity or firewalls?. J High Energ Phys, 2013, 2013: 62 CrossRef ADS arXiv Google Scholar

[54] Zhang B, Cai Q, You L, et al. Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss. Phys Lett B, 2009, 675: 98-101 CrossRef ADS arXiv Google Scholar

[55] Cardoso V, Hopper S, Macedo C F B, et al. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Phys Rev D, 2016, 94: 084031 CrossRef ADS arXiv Google Scholar

[56] Holdom B, Ren J. Not quite a black hole. Phys Rev D, 2017, 95: 084034 CrossRef ADS arXiv Google Scholar

[57] Barceló C, Carballo-Rubio R, Garay L J. Gravitational wave echoes from macroscopic quantum gravity effects. J High Energ Phys, 2017, 2017: 054 CrossRef ADS arXiv Google Scholar

[58] Price R H, Khanna G. Gravitational wave sources: Reflections and echoes. Class Quantum Grav, 2017, 34: 225005 CrossRef ADS arXiv Google Scholar

[59] Sibandze D, Goswami R, Maharaj S, et al. Echoes from the black holes: Evidence of higher order corrections to General Relativity in strong gravity regime. ArXiv: 1702.04926. Google Scholar

[60] Zhang Y Z. General relativity and it experiment tests (in Chinese). Modern Phys, 2015, 27: 3–8 [张元仲. 广义相对论及其实验证明. 现代物理知识, 2015, 27: 3–8]. Google Scholar

[61] Abedi J, Dykaar H, Afshordi N. Echoes from the abyss: Tentative evidence for Planck-scale structure at black hole horizons. Phys Rev D, 2017, 96: 082004 CrossRef ADS arXiv Google Scholar

[62] Westerweck J, Nielsen A, Fischer-Birnholtz O, et al. Low significance of evidence for black hole echoes in gravitational wave data. ArXiv: 1712.09966. Google Scholar

[63] Cardoso V, Pani P. Tests for the existence of black holes through gravitational wave echoes. Nat Astron, 2017, 1: 586-591 CrossRef ADS arXiv Google Scholar

[64] Maselli A, V?lkel S H, Kokkotas K D. Parameter estimation of gravitational wave echoes from exotic compact objects. Phys Rev D, 2017, 96: 064045 CrossRef ADS arXiv Google Scholar

[65] Conklin R, Holdom B, Ren J. Gravitational wave echoes through new windows. ArXiv: 1712.06517. Google Scholar

[66] Wang Y, Li Z P, Zhang J, et al. Are gravitational wave ringdown echoes always equal-interval? ArXiv: 1802.02003. Google Scholar

[67] Nakano H, Sago N, Tagoshi H, et al. Black hole ringdown echoes and howls. ArXiv: 1704.07175. Google Scholar

[68] Mark Z, Zimmerman A, Du S M, et al. A recipe for echoes from exotic compact objects. Phys Rev D, 2017, 96: 084002 CrossRef ADS arXiv Google Scholar

[69] Bueno P, Cano P A, Goelen F, et al. Echoes of Kerr-like wormholes. Phys Rev D, 2018, 97: 024040 CrossRef ADS arXiv Google Scholar

[70] Dreyer O, Kelly B, Krishnan B, et al. Black-hole spectroscopy: Testing general relativity through gravitational-wave observations. Class Quantum Grav, 2004, 21: 787-803 CrossRef ADS Google Scholar

[71] Liu L, Zhao Z. General Relativity (in Chinese), Beijing: High Education Press, 2004. 130–132 [刘辽, 赵峥. 广义相对论. 北京: 高等教育出版社, 2004. 130–132]. Google Scholar

[72] Eardley D M, Lee D L, Lightman A P. Gravitational-wave observations as a tool for testing relativistic gravity. Phys Rev D, 1973, 8: 3308-3321 CrossRef ADS Google Scholar

[73] Liang D, Gong Y, Hou S, et al. Polarizations of gravitational waves in f(R) gravity. Phys Rev D, 2017, 95: 104034 CrossRef ADS arXiv Google Scholar

[74] Newman E, Penrose R. An approach to gravitational radiation by a method of spin coefficients. J Math Phys, 1962, 3: 566-578 CrossRef ADS Google Scholar

[75] Nicolis A, Rattazzi R, Trincherini E. Galileon as a local modification of gravity. Phys Rev D, 2009, 79: 064036 CrossRef ADS arXiv Google Scholar

[76] Deffayet C, Esposito-Farèse G, Vikman A. Covariant Galileon. Phys Rev D, 2009, 79: 084003 CrossRef ADS arXiv Google Scholar

[77] Charmousis C, Copeland E J, Padilla A, et al. General second-order scalar-tensor theory and self-tuning. Phys Rev Lett, 2012, 108: 051101 CrossRef PubMed ADS arXiv Google Scholar

[78] Martín-Moruno P, Nunes N J, Lobo F S. Horndeski theories self-tuning to a de Sitter vacuum. Phys Rev D, 2015, 91: 084029 CrossRef ADS arXiv Google Scholar

[79] Nojiri S’, Odintsov S D, Sasaki M. Gauss-Bonnet dark energy. Phys Rev D, 2005, 71: 123509 CrossRef ADS Google Scholar

[80] Gleyzes J, Langlois D, Piazza F, et al. New class of consistent scalar-tensor theories. Phys Rev Lett, 2015, 114: 211101 CrossRef PubMed ADS arXiv Google Scholar

[81] Langlois D, Noui K. Degenerate higher derivative theories beyond Horndeski: Evading the Ostrogradski instability. J Cosmol Astropart Phys, 2016, 2016: 034 CrossRef ADS arXiv Google Scholar

[82] Achour J B, Crisostomi M, Koyama K, et al. Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order. J High Energ Phys, 2016, 2016: 100 CrossRef ADS Google Scholar

[83] Nishizawa A, Taruya A, Hayama K, et al. Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Phys Rev D, 2009, 79: 082002 CrossRef ADS arXiv Google Scholar

[84] Abbott B P, Abbott R, Abbott T D, et al. A search for tensor, vector, and scalar polarizations in the stochastic gravitational-wave background. ArXiv: 1802.10194. Google Scholar

[85] Lee K J, Jenet F A, Price R H. Pulsar timing as a probe of non‐Einsteinian polarizations of gravitational waves. Astrophys J, 2008, 685: 1304-1319 CrossRef ADS Google Scholar

[86] Lee K, Jenet F A, Price R H, et al. Detecting massive gravitons using pulsar timing arrays. Astrophys J, 2010, 722: 1589-1597 CrossRef ADS arXiv Google Scholar

[87] Will C M. Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys Rev D, 1998, 57: 2061-2068 CrossRef ADS Google Scholar

[88] Goldhaber A S, Nieto M M. Mass of the graviton. Phys Rev D, 1974, 9: 1119-1121 CrossRef ADS Google Scholar

[89] Hare M G. Mass of the graviton. Can J Phys, 1973, 51: 431-433 CrossRef ADS Google Scholar

[90] Finn L S, Sutton P J. Bounding the mass of the graviton using binary pulsar observations. Phys Rev D, 2002, 65: 044022 CrossRef ADS Google Scholar

[91] Choudhury S R, Joshi G C, Mahajan S, et al. Probing large distance higher dimensional gravity from lensing data. Astropart Phys, 2004, 21: 559-563 CrossRef ADS Google Scholar

[92] Goldstein A, Veres P, Burns E, et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys J, 2017, 848: L14 CrossRef ADS arXiv Google Scholar

[93] Savchenko V, Ferrigno C, Kuulkers E, et al. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys J, 2017, 848: L15 CrossRef ADS arXiv Google Scholar

[94] Gong Y, Papantonopoulos E, Yi Z. Constraints on scalar-tensor theory of gravity by the recent observational results on gravitational waves. ArXiv: 1711.04102. Google Scholar

[95] Baker T, Bellini E, Ferreira P G, et al. Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys Rev Lett, 2017, 119: 251301 CrossRef PubMed ADS arXiv Google Scholar

[96] Creminelli P, Vernizzi F. Dark energy after GW170817 and GRB170817A. Phys Rev Lett, 2017, 119: 251302 CrossRef PubMed ADS arXiv Google Scholar

[97] Sakstein J, Jain B. Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys Rev Lett, 2017, 119: 251303 CrossRef PubMed ADS arXiv Google Scholar

[98] Ezquiaga J M, Zumalacárregui M. Dark energy after GW170817: Dead ends and the road ahead. Phys Rev Lett, 2017, 119: 251304 CrossRef PubMed ADS Google Scholar

[99] De Felice A, Tsujikawa S. Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models. J Cosmol Astropart Phys, 2012, 2012: 007 CrossRef ADS arXiv Google Scholar

[100] Renk J, Zumalacárregui M, Montanari F, et al. Galileon gravity in light of ISW, CMB, BAO and H0 data. J Cosmol Astropart Phys, 2017, 2017: 020 CrossRef ADS arXiv Google Scholar

[101] Wex N. Neutron Stars as Probes for General Relativity and Gravitational Waves. Cham: Springer International Publishing, 2016. 1–24. Google Scholar

[102] Cai Y F, Li C, Saridakis E N, et al. f(T) gravity after GW170817 and GRB170817A. ArXiv: 1801.05827. Google Scholar

[103] Gong Y, Hou S, Liang D, et al. Gravitational waves in Einstein-?ther theory and generalized TeVeS theory after GW170817. ArXiv: 1801.03382. Google Scholar

[104] Fan X L, Liao K, Biesiada M, et al. Speed of gravitational waves from strongly lensed gravitational waves and electromagnetic signals. Phys Rev Lett, 2017, 118: 091102 CrossRef PubMed ADS arXiv Google Scholar

[105] Abbott B P, Abbott R, Abbott T D, et al. Tests of general relativity with GW150914. Phys Rev Lett, 2016, 116: 221101 CrossRef PubMed ADS arXiv Google Scholar

[106] Agathos M, Del Pozzo W, Li T G F, et al. TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries. Phys Rev D, 2014, 89: 082001 CrossRef ADS arXiv Google Scholar

[107] Meidam J, Agathos M, Van Den Broeck C, et al. Testing the no-hair theorem with black hole ringdowns using TIGER. Phys Rev D, 2014, 90: 064009 CrossRef ADS arXiv Google Scholar

[108] Arun K G, Iyer B R, Qusailah M S S, et al. Testing post-Newtonian theory with gravitational wave observations. Class Quantum Grav, 2006, 23: L37-L43 CrossRef ADS Google Scholar

[109] Yunes N, Pretorius F. Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework. Phys Rev D, 2009, 80: 122003 CrossRef ADS arXiv Google Scholar

[110] Tso R, Zanolin M. Measuring violations of general relativity from single gravitational wave detection by nonspinning binary systems: Higher-order asymptotic analysis. Phys Rev D, 2016, 93: 124033 CrossRef ADS arXiv Google Scholar

[111] Yunes N, Hughes S A. Binary pulsar constraints on the parametrized post-Einsteinian framework. Phys Rev D, 2010, 82: 082002 CrossRef ADS arXiv Google Scholar

[112] Yunes N, Yagi K, Pretorius F. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys Rev D, 2016, 94: 084002 CrossRef ADS arXiv Google Scholar

[113] Cao Z, Galaviz P, Li L F. Binary black hole mergers in f(R) theory. Phys Rev D, 2013, 87: 104029 CrossRef ADS arXiv Google Scholar

[114] Shibata M, Nakao K, Nakamura T. Scalar-type gravitational wave emission from gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer. Phys Rev D, 1994, 50: 7304-7317 CrossRef ADS Google Scholar

[115] Herdeiro C, Radu E. Construction and physical properties of Kerr black holes with scalar hair. Class Quantum Grav, 2015, 32: 144001 CrossRef ADS arXiv Google Scholar

[116] Herdeiro C A R, Radu E. Kerr black holes with scalar hair. Phys Rev Lett, 2014, 112: 221101 CrossRef PubMed ADS arXiv Google Scholar

[117] Yang Q, Ji L W, Hu B, et al. An axion-like scalar field environment effect on binary black hole merger. ArXiv: 1706.00678. Google Scholar

[118] Berti E, Cardoso V, Gualtieri L, et al. Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem. Phys Rev D, 2013, 87: 124020 CrossRef ADS arXiv Google Scholar

[119] Healy J, Bode T, Haas R, et al. Late inspiral and merger of binary black holes in scalar-tensor theories of gravity. Class Quantum Grav, 2012, 29: 232002 CrossRef ADS arXiv Google Scholar

[120] Shibata M, Taniguchi K, Okawa H, et al. Coalescence of binary neutron stars in a scalar-tensor theory of gravity. Phys Rev D, 2014, 89: 084005 CrossRef ADS arXiv Google Scholar

[121] Barausse E, Palenzuela C, Ponce M, et al. Neutron-star mergers in scalar-tensor theories of gravity. Phys Rev D, 2013, 87: 081506 CrossRef ADS arXiv Google Scholar

[122] Cao Z J. From the gravitational wave detection to multi-messenger astronomy (in Chinese). College Phys, 2018, 37: 1–21 [曹周键. 从引力波探测到包含引力波的多信使天文学. 大学物理, 2018, 37: 1–21]. Google Scholar

[123] Fan X L, Chen Y B. Stochastic gravitational-wave background from spin loss of black holes. ArXiv: 1712.00784. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1