Structural transition of pentacene monolayer on Cd(0001)

logo

SCIENTIA SINICA Physica, Mechanica & Astronomica, Volume 48, Issue 11: 117002(2018) https://doi.org/10.1360/SSPMA2018-00105

Structural transition of pentacene monolayer on Cd(0001)

More info
  • ReceivedApr 4, 2018
  • AcceptedMay 17, 2018
  • PublishedAug 6, 2018
PACS numbers

Abstract

Pentacene is a typical organic semiconductor molecule, which has important application value in organic electronics. In this paper, the two-dimensional self-assembled structures of pentacene on the Cd(0001) surface were investigated by means of organic molecular beam deposition (OMBD) and low-temperature scanning tunneling microscopy (LT-STM). Three structural transitions induced by temperature were found. (1) Pentacene molecules form a disordered molecular monolayer under the room-temperature deposition conditions. (2) For the disorder monolayer, annealing the sample at 320?K leads to the transition from disordered phase to a well ordered monolayer, in which two kinds of molecular chains with different molecular orientations are alternately arranged, constituting the herringbone structure. (3) When the annealing temperature is increased to 350?K, the herringbone packing transforms into a unique chiral clover structure that has never been reported: three same pentacene dimers arrange into a chiral pinwheel structure. (4) Further increasing the annealing temperature to 400?K, the chiral clover structure transforms into a common and ordered brick-wall structure. With the combination of density functional theory (DFT) calculation, it is found that the change of charge density at both ends of individual pentacene molecule is opposite, which indicates that the each pentacene molecule has the net dipole moment. It is particularly interesting that the organizational chirality of chiral clover structure can be switched from one enantiomer to another driven by the electric filed from a STM tip.


Funded by

重庆市研究生科研创新项目(CYS17085)


References

[1] Minakata T, Imai H, Ozaki M, et al. Structural studies on highly ordered and highly conductive thin films of pentacene. J Appl Phys, 1992, 72: 5220-5225 CrossRef ADS Google Scholar

[2] Nelson S F, Lin Y Y, Gundlach D J, et al. Temperature-independent transport in high-mobility pentacene transistors. Appl Phys Lett, 1998, 72: 1854-1856 CrossRef ADS Google Scholar

[3] Jurchescu O D, Baas J, Palstra T T M. Effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett, 2004, 84: 3061-3063 CrossRef ADS Google Scholar

[4] Menozzi C, Corradini V, Cavallini M, et al. Pentacene self-aggregation at the Au(110)-(1×2) surface: Growth morphology and interface electronic states. Thin Solid Films, 2003, 428: 227-231 CrossRef ADS Google Scholar

[5] Corradini V, Menozzi C, Cavallini M, et al. Growth morphology and electronic structure of 2D ordered pentacene on the Au(110)-(1×2) surface. Surf Sci, 2003, 532-535: 249-254 CrossRef ADS Google Scholar

[6] Wang L, Fine D, Jung T, et al. Pentacene field-effect transistors with sub-10-nm channel lengths. Appl Phys Lett, 2004, 85: 1772-1774 CrossRef ADS Google Scholar

[7] Schroeder R, Majewski L A, Grell M. A study of the threshold voltage in pentacene organic field-effect transistors. Appl Phys Lett, 2003, 83: 3201-3203 CrossRef ADS Google Scholar

[8] Daraktchiev M, Mühlenen A, Nüesch F, et al. Ultrathin organic transistors on oxide surfaces. New J Phys, 2005, 7: 133 CrossRef ADS Google Scholar

[9] Klauk H, Gundlach D J, Nichols J A, et al. Pentacene organic thin-film transistors for circuit and display applications. IEEE Trans Electron Devices, 1999, 46: 1258-1263 CrossRef ADS Google Scholar

[10] Laquindanum J G, Katz H E, Lovinger A J, et al. Morphological origin of high mobility in pentacene thin-film transistors. Chem Mater, 1996, 8: 2542-2544 CrossRef Google Scholar

[11] Lin Y Y, Gundlach D I, Nelson S F, et al. Pentacene-based organic thin-film transistors. IEEE Trans Electron Devices, 1997, 44: 1325-1331 CrossRef ADS Google Scholar

[12] Choo M H, Kim J H, Im S. Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors. Appl Phys Lett, 2002, 81: 4640-4642 CrossRef ADS Google Scholar

[13] Choo M H, Hong W S, Im S. Characterization of pentacene organic thin film transistors fabricated on SiNx films by non-photolithographic processes. Thin Solid Films, 2002, 420-421: 492-496 CrossRef ADS Google Scholar

[14] Kim S S, Choi Y S, Kim K, et al. Fabrication of p-pentacene/n-Si organic photodiodes and characterization of their photoelectric properties. Appl Phys Lett, 2003, 82: 639-641 CrossRef ADS Google Scholar

[15] Voz C, Puigdollers J, Martín I, et al. Optoelectronic devices based on evaporated pentacene films. Sol Energy Mater Sol Cells, 2005, 87: 567-573 CrossRef Google Scholar

[16] Lee J. Pentacene-based photodiode with Schottky junction. Thin Solid Films, 2004, 451-452: 12-15 CrossRef ADS Google Scholar

[17] Schroeder P G, France C B, Park J B, et al. Energy level alignment and two-dimensional structure of pentacene on Au(111) surfaces. J Appl Phys, 2002, 91: 3010-3014 CrossRef ADS Google Scholar

[18] France C B, Schroeder P G, Forsythe J C, et al. Scanning tunneling microscopy study of the coverage-dependent structures of pentacene on Au(111). Langmuir, 2003, 19: 1274-1281 CrossRef Google Scholar

[19] Wang Y L, Ji W, Shi D X, et al. Structural evolution of pentacene on a Ag(110) surface. Phys Rev B, 2004, 69: 075408 CrossRef ADS Google Scholar

[20] Smerdon J A, Bode M, Guisinger N P, et al. Publisher’s Note: Monolayer and bilayer pentacene on Cu(111) [Phys. Rev. B 84 , 165436 (2011)]. Phys Rev B, 2011, 84: 239901 CrossRef ADS Google Scholar

[21] Wang J Z, Wu K H, Yang W S, et al. Structural transition of pentacene monolayer on Ga bilayer: From brick-wall structure to herringbone pattern of molecular dimers. Surf Sci, 2005, 579: 80-88 CrossRef ADS Google Scholar

[22] Sun K, Shao T N, Xie J L, et al. Chiral pinwheel clusters lacking local point chirality. Small, 2012, 8: 2078-2082 CrossRef PubMed Google Scholar

[23] Tao M L, Xiao H F, Sun K, et al. Visualizing buried silicon atoms at the Cd-Si(111)-7×7 interface with localized electrons. Phys Rev B, 2017, 96: 125410 CrossRef ADS Google Scholar

[24] Eremtchenko M, Temirov R, Bauer D, et al. Formation of molecular order on a disordered interface layer: Pentacene/Ag(111). Phys Rev B, 2005, 72: 115430 CrossRef ADS Google Scholar

[25] Koch N, Vollmer A, Duhm S, et al. The effect of fluorination on pentacene/gold interface energetics and charge reorganization energy. Adv Mater, 2007, 19: 112-116 CrossRef Google Scholar

[26] Curtis M D, Cao J, Kampf J W. Solid-state packing of conjugated oligomers: From π-stacks to the herringbone structure. J Am Chem Soc, 2004, 126: 4318-4328 CrossRef PubMed Google Scholar

[27] Mattheus C C, de Wijs G A, de Groot R A, et al. Modeling the polymorphism of pentacene. J Am Chem Soc, 2003, 125: 6323-6330 CrossRef PubMed Google Scholar

[28] Su G J, Yin S X, Wan L J, et al. Dimerization of three xanthene dyes on Au(111) surface. Surf Sci, 2004, 551: 204-212 CrossRef ADS Google Scholar

[29] Peng G P, Wang J H, Lan M, et al. Dimerization and self-assembled monolayer of perfluoropentacene on the semimetal Ga film (in Chinese). Sci Sin Chim, 2010, 40: 167–172 [彭桂平, 王进华, 兰梦, 等. 全氟并五苯在半金属Ga表面的分子二聚化及自组装单层. 中国科学: 化学, 2010, 40: 167–172]. Google Scholar

[30] B?hringer M, Schneider W D, Berndt R. Real space observation of a chiral phase transition in a two-dimensional organic layer. Angew Chem Int Ed, 2000, 39: 792-795 CrossRef Google Scholar

[31] Mairena A, Zoppi L, Seibel J, et al. Heterochiral to homochiral transition in pentahelicene 2D crystallization induced by second-layer nucleation. ACS Nano, 2017, 11: 865-871 CrossRef Google Scholar

[32] Wang Y L, Sun K, Tu Y B, et al. Chirality switching of the self-assembled CuPc domains induced by electric field. Phys Chem Chem Phys, 2018, 20: 7125-7131 CrossRef PubMed ADS Google Scholar

[33] Takasugi K, Yokoyama T. Coverage induced structural transformations of tetracene on Ag(110). J Chem Phys, 2016, 144: 104702 CrossRef PubMed ADS Google Scholar

[34] Xiao H F, Hao S J, Sun K, et al. The transparency of Cd(0001) films grown on Si(111)-7×7: Imaging the interface at atomic scale (in Chinese). Sci Sin-Phys Mech Astron, 2017, 47: 100–105 [肖华芳, 郝少杰, 孙凯, 等. Si(111)-7×7表面上Cd(0001)薄膜的透明性: 原子尺度下的界面成像. 中国科学: 物理学 力学 天文学, 2017, 47: 100–105]. Google Scholar

[35] Soe W H, Manzano C, De Sarkar A, et al. Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys Rev Lett, 2009, 102: 176102 CrossRef PubMed ADS Google Scholar

[36] Gall J, Zeppenfeld P, Sun L, et al. Spectroscopic STM studies of single pentacene molecules on Cu(110)--c(6×2)O. Phys Rev B, 2016, 94: 195441 CrossRef ADS Google Scholar

Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有

京ICP备18024590号-1