Pentacene is a typical organic semiconductor molecule, which has important application value in organic electronics. In this paper, the two-dimensional self-assembled structures of pentacene on the Cd(0001) surface were investigated by means of organic molecular beam deposition (OMBD) and low-temperature scanning tunneling microscopy (LT-STM). Three structural transitions induced by temperature were found. (1) Pentacene molecules form a disordered molecular monolayer under the room-temperature deposition conditions. (2) For the disorder monolayer, annealing the sample at
重庆市研究生科研创新项目(CYS17085)
[1] Minakata T, Imai H, Ozaki M, et al. Structural studies on highly ordered and highly conductive thin films of pentacene. J Appl Phys, 1992, 72: 5220-5225 CrossRef ADS Google Scholar
[2] Nelson S F, Lin Y Y, Gundlach D J, et al. Temperature-independent transport in high-mobility pentacene transistors. Appl Phys Lett, 1998, 72: 1854-1856 CrossRef ADS Google Scholar
[3] Jurchescu O D, Baas J, Palstra T T M. Effect of impurities on the mobility of single crystal pentacene. Appl Phys Lett, 2004, 84: 3061-3063 CrossRef ADS Google Scholar
[4] Menozzi C, Corradini V, Cavallini M, et al. Pentacene self-aggregation at the Au(110)-(1×2) surface: Growth morphology and interface electronic states. Thin Solid Films, 2003, 428: 227-231 CrossRef ADS Google Scholar
[5] Corradini V, Menozzi C, Cavallini M, et al. Growth morphology and electronic structure of 2D ordered pentacene on the Au(110)-(1×2) surface. Surf Sci, 2003, 532-535: 249-254 CrossRef ADS Google Scholar
[6] Wang L, Fine D, Jung T, et al. Pentacene field-effect transistors with sub-10-nm channel lengths. Appl Phys Lett, 2004, 85: 1772-1774 CrossRef ADS Google Scholar
[7] Schroeder R, Majewski L A, Grell M. A study of the threshold voltage in pentacene organic field-effect transistors. Appl Phys Lett, 2003, 83: 3201-3203 CrossRef ADS Google Scholar
[8] Daraktchiev M, Mühlenen A, Nüesch F, et al. Ultrathin organic transistors on oxide surfaces. New J Phys, 2005, 7: 133 CrossRef ADS Google Scholar
[9] Klauk H, Gundlach D J, Nichols J A, et al. Pentacene organic thin-film transistors for circuit and display applications. IEEE Trans Electron Devices, 1999, 46: 1258-1263 CrossRef ADS Google Scholar
[10] Laquindanum J G, Katz H E, Lovinger A J, et al. Morphological origin of high mobility in pentacene thin-film transistors. Chem Mater, 1996, 8: 2542-2544 CrossRef Google Scholar
[11] Lin Y Y, Gundlach D I, Nelson S F, et al. Pentacene-based organic thin-film transistors. IEEE Trans Electron Devices, 1997, 44: 1325-1331 CrossRef ADS Google Scholar
[12] Choo M H, Kim J H, Im S. Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors. Appl Phys Lett, 2002, 81: 4640-4642 CrossRef ADS Google Scholar
[13]
Choo
M H,
Hong
W S,
Im
S.
Characterization of pentacene organic thin film transistors fabricated on SiN
[14] Kim S S, Choi Y S, Kim K, et al. Fabrication of p-pentacene/n-Si organic photodiodes and characterization of their photoelectric properties. Appl Phys Lett, 2003, 82: 639-641 CrossRef ADS Google Scholar
[15] Voz C, Puigdollers J, Martín I, et al. Optoelectronic devices based on evaporated pentacene films. Sol Energy Mater Sol Cells, 2005, 87: 567-573 CrossRef Google Scholar
[16] Lee J. Pentacene-based photodiode with Schottky junction. Thin Solid Films, 2004, 451-452: 12-15 CrossRef ADS Google Scholar
[17] Schroeder P G, France C B, Park J B, et al. Energy level alignment and two-dimensional structure of pentacene on Au(111) surfaces. J Appl Phys, 2002, 91: 3010-3014 CrossRef ADS Google Scholar
[18] France C B, Schroeder P G, Forsythe J C, et al. Scanning tunneling microscopy study of the coverage-dependent structures of pentacene on Au(111). Langmuir, 2003, 19: 1274-1281 CrossRef Google Scholar
[19] Wang Y L, Ji W, Shi D X, et al. Structural evolution of pentacene on a Ag(110) surface. Phys Rev B, 2004, 69: 075408 CrossRef ADS Google Scholar
[20]
Smerdon
J A,
Bode
M,
Guisinger
N P, et al.
Publisher’s Note: Monolayer and bilayer pentacene on Cu(111) [Phys. Rev. B
[21] Wang J Z, Wu K H, Yang W S, et al. Structural transition of pentacene monolayer on Ga bilayer: From brick-wall structure to herringbone pattern of molecular dimers. Surf Sci, 2005, 579: 80-88 CrossRef ADS Google Scholar
[22] Sun K, Shao T N, Xie J L, et al. Chiral pinwheel clusters lacking local point chirality. Small, 2012, 8: 2078-2082 CrossRef PubMed Google Scholar
[23] Tao M L, Xiao H F, Sun K, et al. Visualizing buried silicon atoms at the Cd-Si(111)-7×7 interface with localized electrons. Phys Rev B, 2017, 96: 125410 CrossRef ADS Google Scholar
[24] Eremtchenko M, Temirov R, Bauer D, et al. Formation of molecular order on a disordered interface layer: Pentacene/Ag(111). Phys Rev B, 2005, 72: 115430 CrossRef ADS Google Scholar
[25] Koch N, Vollmer A, Duhm S, et al. The effect of fluorination on pentacene/gold interface energetics and charge reorganization energy. Adv Mater, 2007, 19: 112-116 CrossRef Google Scholar
[26] Curtis M D, Cao J, Kampf J W. Solid-state packing of conjugated oligomers: From π-stacks to the herringbone structure. J Am Chem Soc, 2004, 126: 4318-4328 CrossRef PubMed Google Scholar
[27] Mattheus C C, de Wijs G A, de Groot R A, et al. Modeling the polymorphism of pentacene. J Am Chem Soc, 2003, 125: 6323-6330 CrossRef PubMed Google Scholar
[28] Su G J, Yin S X, Wan L J, et al. Dimerization of three xanthene dyes on Au(111) surface. Surf Sci, 2004, 551: 204-212 CrossRef ADS Google Scholar
[29] Peng G P, Wang J H, Lan M, et al. Dimerization and self-assembled monolayer of perfluoropentacene on the semimetal Ga film (in Chinese). Sci Sin Chim, 2010, 40: 167–172 [彭桂平, 王进华, 兰梦, 等. 全氟并五苯在半金属Ga表面的分子二聚化及自组装单层. 中国科学: 化学, 2010, 40: 167–172]. Google Scholar
[30] B?hringer M, Schneider W D, Berndt R. Real space observation of a chiral phase transition in a two-dimensional organic layer. Angew Chem Int Ed, 2000, 39: 792-795 CrossRef Google Scholar
[31] Mairena A, Zoppi L, Seibel J, et al. Heterochiral to homochiral transition in pentahelicene 2D crystallization induced by second-layer nucleation. ACS Nano, 2017, 11: 865-871 CrossRef Google Scholar
[32] Wang Y L, Sun K, Tu Y B, et al. Chirality switching of the self-assembled CuPc domains induced by electric field. Phys Chem Chem Phys, 2018, 20: 7125-7131 CrossRef PubMed ADS Google Scholar
[33] Takasugi K, Yokoyama T. Coverage induced structural transformations of tetracene on Ag(110). J Chem Phys, 2016, 144: 104702 CrossRef PubMed ADS Google Scholar
[34] Xiao H F, Hao S J, Sun K, et al. The transparency of Cd(0001) films grown on Si(111)-7×7: Imaging the interface at atomic scale (in Chinese). Sci Sin-Phys Mech Astron, 2017, 47: 100–105 [肖华芳, 郝少杰, 孙凯, 等. Si(111)-7×7表面上Cd(0001)薄膜的透明性: 原子尺度下的界面成像. 中国科学: 物理学 力学 天文学, 2017, 47: 100–105]. Google Scholar
[35] Soe W H, Manzano C, De Sarkar A, et al. Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope. Phys Rev Lett, 2009, 102: 176102 CrossRef PubMed ADS Google Scholar
[36] Gall J, Zeppenfeld P, Sun L, et al. Spectroscopic STM studies of single pentacene molecules on Cu(110)--c(6×2)O. Phys Rev B, 2016, 94: 195441 CrossRef ADS Google Scholar
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1