Metal halide perovskites have shown great performance for various applications, including solar cells, light emitting diodes, and radiation detectors, but they still suffer from the toxicity of lead and instability. Here we report the use of lanthanide series as trivalent metals to obtain low toxicity and highly stable double perovskites (Cs2NaLnCl6, Ln=Tb or Eu) with high scintillation light yield. The crystals exhibit typical f-f transitions of lanthanide cations, while Cs2NaTbCl6 exhibits strong green photoluminescence, and Cs2NaEuCl6 exhibits red photoluminescence. Under X-ray radiations, the light yield of Cs2NaTbCl6 reaches 46600 photons MeV?1, much higher than that of the commercially used (Lu,Y)2SiO5:Ce3+ crystals (LYSO, 28500 photons MeV?1), and previously reported lead-based perovskites (14000 photons MeV?1). As a new member of lead-free perovskites, lanthanide-based double perovskites open up a new route toward radiation detections and potential medical imaging.
the Major State Basic Research Development Program of China(2016YFB0700702)
the National Natural Science Foundation of China(5171101030,51602114)
the HUST Key Innovation Team for Interdisciplinary Promotion(2016JCTD111)
the Open Fund of State Key Laboratory of Luminescence and Applications(SKLA-2016-08)
This work was supported by the Major State Basic Research Development Program of China (2016YFB0700702), the National Natural Science Foundation of China (5171101030, 51602114), the HUST Key Innovation Team for Interdisciplinary Promotion (2016JCTD111) and the Open Fund of State Key Laboratory of Luminescence and Applications (SKLA-2016-08). The authors thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices, WNLO.
The authors declare that they have no conflict of interest.
The supporting information is available online at
[1] Weber MJ. J Lumin, 2002, 100: 35-45 CrossRef ADS Google Scholar
[2] van Eijk CWE. Phys Med Biol, 2002, 47: R85-R106 CrossRef ADS Google Scholar
[3] Kinahan PE, Hasegawa BH, Beyer T. Semin Nucl Med, 2003, 33: 166-179 CrossRef PubMed Google Scholar
[4] Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin WJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Nat Photon, 2017, 11: 726-732 CrossRef ADS Google Scholar
[5] Antonuk LE, El-Mohri Y, Siewerdsen JH, Yorkston J, Huang W, Scarpine VE, Street RA. Med Phys, 1997, 24: 51-70 CrossRef PubMed ADS Google Scholar
[6] Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang HH, Wang C, Ecker BR, Gao Y, Loi MA, Cao L, Huang J. Nat Photon, 2016, 10: 333-339 CrossRef ADS Google Scholar
[7] Kim YC, Kim KH, Son DY, Jeong DN, Seo JY, Choi YS, Han IT, Lee SY, Park NG. Nature, 2017, 550: 87-91 CrossRef PubMed ADS Google Scholar
[8] Wei W, Zhang Y, Xu Q, Wei H, Fang Y, Wang Q, Deng Y, Li T, Gruverman A, Cao L, Huang J. Nat Photon, 2017, 11: 315-321 CrossRef ADS Google Scholar
[9] Yuan H, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Uji-I H, De Schryver F, Samorì P, Hofkens J, Roeffaers M. J Phys Chem Lett, 2016, 7: 561-566 CrossRef PubMed Google Scholar
[10] Lignos I, Stavrakis S, Nedelcu G, Protesescu L, deMello AJ, Kovalenko MV. Nano Lett, 2016, 16: 1869-1877 CrossRef PubMed ADS Google Scholar
[11] Kawano N, Koshimizu M, Okada G, Fujimoto Y, Kawaguchi N, Yanagida T, Asai K. Sci Rep, 2017, 7: 14754 CrossRef PubMed ADS Google Scholar
[12] Baryshevsky VG, Korzhik MV, Minkov BI, Smirnova SA, Fyodorov AA, Dorenbos P, van Eijk CWE. J Phys-Condens Matter, 1993, 5: 7893-7902 CrossRef ADS Google Scholar
[13] Holl I, Lorenz E, Mageras G. IEEE Trans Nucl Sci, 1988, 35: 105-109 CrossRef ADS Google Scholar
[14]
Seferlis Ι. Investigatoin and imaging characteristics of a CMOS sensor based digital detector coupled to a red emitting fluorescent screen.
[15] Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. J Am Chem Soc, 2016, 138: 2138-2141 CrossRef PubMed Google Scholar
[16] Luo J, Li S, Wu H, Zhou Y, Li Y, Liu J, Li J, Li K, Yi F, Niu G, Tang J. ACS Photonics, 2018, 5: 398-405 CrossRef Google Scholar
[17] Volonakis G, Haghighirad AA, Milot RL, Sio WH, Filip MR, Wenger B, Johnston MB, Herz LM, Snaith HJ, Giustino F. J Phys Chem Lett, 2017, 8: 772-778 CrossRef PubMed Google Scholar
[18] Greul E, Petrus ML, Binek A, Docampo P, Bein T. J Mater Chem A, 2017, 5: 19972-19981 CrossRef Google Scholar
[19] Lozhkina OA, Murashkina AA, Elizarov MS, Shilovskikh VV, Zolotarev AA, Kapitonov YV, Kevorkyants R, Emeline AV, Miyasaka T. Chem Phys Lett, 2018, 694: 18-22 CrossRef ADS arXiv Google Scholar
[20] Meng W, Wang X, Xiao Z, Wang J, Mitzi DB, Yan Y. J Phys Chem Lett, 2017, 8: 2999-3007 CrossRef PubMed Google Scholar
[21] Shi H, Du MH. Phys Rev Appl, 2015, 3: 054005 CrossRef ADS Google Scholar
[22] Toby BH. J Appl Crystlogr, 2001, 34: 210-213 CrossRef Google Scholar
[23] Poblete V, Navarro G, Martin V, Alvarez M. Powder Diffr, 2002, 17: 10-12 CrossRef ADS Google Scholar
[24] Morss LR, Siegal M, Stenger L, Edelstein N. Inorg Chem, 2002, 9: 1771-1775 CrossRef Google Scholar
[25] Faulkner TR, Richardson FS. Mol Phys, 1978, 36: 193-914 CrossRef Google Scholar
[26] Zhang Y, Li X, Li K, Lian H, Shang M, Lin J. ACS Appl Mater Interfaces, 2015, 7: 2715-2725 CrossRef PubMed Google Scholar
[27] Banerjee AK, Stewart-Darling F, Flint CD, Schwartz RW. J Phys Chem, 1981, 85: 146-148 CrossRef Google Scholar
[28] Liu Y, Tu D, Zhu H, Li R, Luo W, Chen X. Adv Mater, 2010, 22: 3266-3271 CrossRef PubMed Google Scholar
[29] Li L, Peng M, Viana B, Wang J, Lei B, Liu Y, Zhang Q, Qiu J. Inorg Chem, 2015, 54: 6028-6034 CrossRef PubMed Google Scholar
[30] Tang W, Zhang Z. J Mater Chem C, 2015, 3: 5339-5346 CrossRef Google Scholar
[31]
Glodo J, van Loef EVD, Higgins WM, Shah KS.
[32] Hawrami R, Glodo J, Shah KS, Cherepy N, Payne S, Burger A, Boatner L. J Cryst Growth, 2013, 379: 69-72 CrossRef ADS Google Scholar
Figure 1
XRD patterns of Cs2NaTbCl6 (a) and Cs2NaEuCl6 (b) crystals, and the related Rietveld refinement results. Crosses represent the measured results, red lines are refinement results, blue lines are the difference profile between measured and refinement results, black vertical lines represent the standard diffractions. (c) Crystal structure of Cs2NaLnCl6, while Ln represents trivalent rare earth ions. (d) The images of as-prepared Cs2NaTbCl6 (up) and under ultraviolet light radiations (down). (e) The images of as-prepared Cs2NaEuCl6 (up) and under ultraviolet light radiations (down) (color online).
Figure 2
The excitation and emission spectra (a), color-coded contour maps of wavelength dependent emission spectra (b), and decay curve and fluorescence lifetimes (c) of Cs2NaTbCl6. The excitation and emission spectra (d), color-coded contour maps of wavelength dependent emission spectra (e), and decay curve and fluorescence lifetimes (f) of Cs2NaEuCl6 (color online).
Figure 3
The temperature dependent PL spectra of Cs2NaTbCl6 for 5D4→7F6 transitions (a) and 5D4→7F5 transitions (c), and the plots of integrated PL intensity vs. temperature (b and d). The sample was irradiated under
Figure 4
The generated voltage of multiplier tubes by scintillation light of Cs2NaTbCl6 (red line), Cs2NaEuCl6 (blue line), and (Lu,Y)2SiO5:Ce3+ (LYSO, black line), respectively (color online).
Material | Average voltage response (mV) | Standard deviation of voltage response (mV) | Light yield (photons MeV?1) |
LYSO | 2.234 | 0.016 | 28500 |
Cs2NaTbCl6 | 3.652 | 0.018 | 46600 |
Cs2NaEuCl6 | 0.098 | 0.014 | 1250 |
Copyright 2019 Science China Press Co., Ltd. 科学大众杂志社有限责任公司 版权所有
京ICP备18024590号-1